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Detecting significant community structure in networks with incomplete observations is challenging because
the evidence for specific solutions fades away with missing data. For example, recent research shows that
flow-based community detection methods can highlight spurious communities in sparse undirected and
unweighted networks with missing links. Current Bayesian approaches developed to overcome this problem
do not work for incomplete observations in weighted and directed networks that describe network flows.
To overcome this gap, we extend the idea behind the Bayesian estimate of the map equation for unweighted
and undirected networks to enable more robust community detection in weighted and directed networks.
We derive an empirical Bayes estimate of the transitions rates that can incorporate metadata information
and show how an efficient implementation in the community-detection method Infomap provides more
reliable communities even with a significant fraction of data missing.

Keywords: community detection, directed and weighted networks, incomplete data, the map equation

1. Introduction

Network models gain explainable power with additional information about node labels or link directions
and weights [1, 2]. But these data can also introduce uncertainties such as mislabelled nodes or noisy
link measurements that the network methods must address for reliable further analysis [3]. For example,
when community-detection methods disregard uncertainties in network data, they can overfit and generate
inaccurate node classifications that affect downstream analyses such as link prediction [4–6].
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2 J. SMILJANIĆ ET AL.

To assess the significance of detected communities, we can statistically compare them with expected
results under a null model [7, 8] or test how robust they are under random perturbations of the network [9].
However, both approaches are computationally expensive and impractical for large networks. Instead, we
can integrate regularization mechanisms in the community-detection methods themselves to prevent them
from capitalizing on spurious communities. Several community detection methods take this approach for
undirected and unweighted networks. For example, community-detection methods based on statistical
inference can incorporate assumptions about unreliable measurements into the generative network models
[10, 11]. For the flow-based community-detection method known as the map equation, which identifies
modular structure by searching for sets of nodes with long flow persistence [12, 13], we have derived a
Bayesian estimate that copes with missing unweighted and undirected links [6]. However, dealing with
incomplete observations for robust flow-based community detection in directed and weighted networks
remains unresolved.

Since link weights and directions naturally describe network flows, the map equation works effectively
for directed and weighted networks. But the Bayesian estimate of the map equation for unweighted and
undirected links requires an analytical expression for the network-flow distribution. For directed networks,
no such analytical solution exists. Because the Bayesian estimate of the map equation also assumes a
binary network to derive link probabilities, it cannot be applied directly to weighted and directed networks.

Instead, we start from the basic idea behind the Bayesian estimate of the map equation and derive
an empirical Bayes estimate of the transition rates between nodes in weighted, directed networks. Our
Bayesian estimate employs the continuous configuration model [14] and gives a teleportation-like dynam-
ics in a principled way with critical improvements for robust community detection. To ensure an ergodic
stationary flow distribution in directed networks, standard teleportation turns a random walker into a
random surfer that, besides following links proportional to their weights, teleports uniformly to nodes—
connected or disconnected—at a fixed rate. However, teleporting at a fixed rate disregards basic network
structure and can wash out significant communities, underfitting the data [15]. Other approaches that
reduce the teleportation rate’s influence on the community assignments can instead lead to overfitting in
networks with missing data. In our Bayesian estimate of the transition rates, the network flows depend on
the amount of available data and network type for robust flow-based community detection in unipartite
or bipartite weighted, directed networks with or without metadata (Fig. 1).

We provide an implementation in Infomap that runs at native speed, available for anyone to download
from https://www.mapequation.org. Using synthetic networks with planted community structures and
real-world networks with varying fraction of link observations, we evaluate the empirical Bayes estimate
of the transition rates. We find that Infomap with and without regularized network flows detects similar
and robust communities when enough observations are available. But for incomplete networks with many
missing observations, Infomap with empirical Bayes estimates of the transition rates outperforms standard
Infomap and prevents spurious communities.

2. Methodology

The map equation is an information-theoretic objective function for detecting flow-based communi-
ties [12, 13]. Conceptually, it models network flows as random walks, encodes random walker movements
between nodes using codewords, and estimates the theoretical lower limit of the average per-step code-
length for a given partition of the nodes into modules. In line with the minimum description length
principle, finding the partition that best compresses the network flows is equivalent to identifying most
modular regularities in the network data with respect to those flows. The Infomap software package [16]
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MAPPING FLOWS ON WEIGHTED AND DIRECTED NETWORKS WITH INCOMPLETE OBSERVATIONS 3

(a) (b) (c) (d)

Fig. 1. A schematic weighted network with complete and missing link observations. (a) A complete network with accurate network
flows and inferred communities. (b) Missing link observations introduce inaccuracies. (c) A standard teleportation scheme cannot
overcome the inaccuracies. (d) Regularized network flows with an empirical Bayes estimate of the transition rates using the relaxed
continuous configuration model recovers the complete network’s community structure. Light background areas indicate optimal
community assignments. The width of the light blue lines represents teleportation weight. The size of the light blue node centres
indicates teleportation probability. The dashed black lines show sample trajectories of random walks. We omit link directions in
this example for simplicity.

implements a fast and greedy search algorithm that maximizes flow compression over node partitions by
minimizing the map equation.

The basic idea behind the map equation is a communication game where a sender uses codewords to
update a receiver about the location of the random walker in the network. In a one-level partition without
modular structure, we assign unique codewords to nodes, and the sender communicates one codeword
per random-walker step to the receiver. The lower limit for the codelength is the Shannon entropy over
the nodes’ stationary visit rates according to Shannon’s source coding theorem [17]. When partitioning
nodes into more than one module, we can re-use codewords across modules and achieve shorter average
codelengths. We introduce an index-level codebook to encode transitions between modules and one exit
codeword per module for a uniquely decodable code. The sender uses one codeword to describe transitions
within modules and three codewords between modules: for exiting the old module, for entering the new
module, and for communicating the visited node in the new module. In the same fashion, we can extend
the coding scheme to hierarchies with three or more levels. The partition that compresses the flows on
the network the most reflects the network’s community structure regarding that flow the best.

When sufficiently many observations are available, Infomap returns reliable communities [18, 19].
Because the map equation describes the network as-is, missing observations can misrepresent the actual
stationary flow distribution, change the balance between module- and index-level codebooks, and distort
the communities. As a consequence, the map equation may capitalize on noise and detect spurious
partitions with more and smaller communities than actually present in the complete network [4, 6].

A Bayesian estimate that incorporates prior network assumptions into the map equation overcomes
this overfitting problem, and can be derived in closed form for unweighted undirected networks where the
stationary visit rate for node i is determined by its degree, ki, as pi = ki∑N

i=1 ki
[6, 20]. However, we cannot

directly apply this approach to directed or weighted networks for two reasons. First, we cannot express
a corresponding Bayesian estimate of the map equation analytically because no closed-form solution
exists for node visit rates in directed networks. Second, the prior for weighted networks must incorporate
link weights absent in previous work [6]. Instead, we formulate an empirical Bayes estimate of a random
walker’s transition rates to regularize node visit rates [21].
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4 J. SMILJANIĆ ET AL.

2.1 The map equation with a Bayesian estimate of the transition rates

We consider a weighted directed network with N nodes where A represents the adjacency matrix and
the matrix W contains information on observed link weights. We assume integer weights for simplicity,
but the method also works for non-negative real weights. In general, the probabilities that a random
walker steps from node i to other nodes are given by Ti = (ti1, . . . , tiN). If we interpret the network as
a multigraph, such that wij denotes the number of observed links between nodes i and j, we can explain
Wi = (wi1, . . . , wiN) as a sample of the hidden distribution Ti. Estimating transition rates tij using the
maximum likelihood estimator gives

t̃ij = wij∑
j wij

. (2.1)

However, with noisy data, t̃ij can deviate significantly from tij and cause the map equation to overfit
the observed data. To prevent the map equation from overfitting and increase its generalizability, we
regularize the transition rates using a Bayesian approach [21]. We introduce a prior distribution over Ti

and estimate posterior transition rates

t̂ij(Wi) =
∫

tijP(Ti|Wi)dTi, (2.2)

where P(Ti|Wi) is a posterior over the unknown distribution Ti given by Bayes’ rule,

P(Ti|Wi) = P(Wi|Ti)P(Ti)

P(Wi)
. (2.3)

As prior distribution P(Ti), we choose the Dirichlet distribution, which is the conjugate prior of the
multinomial distribution and enables analytical calculations:

P(Ti|γi) = �(γi1 + · · · + γiN)

�(γi1) . . . �(γiN)

N∏
j=1

t
γij−1
ij . (2.4)

�(x) is the gamma function and γi1 . . . γiN are parameters of the distribution. Given that the likelihood

P(Wi|Ti) = (wi1 + · · · + wiN)!
N∏

j=1

t
wij
ij

wij! (2.5)

and the total probability of the data

P(Wi) =
∫

P(Wi|Ti)P(Ti)dTi, (2.6)
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MAPPING FLOWS ON WEIGHTED AND DIRECTED NETWORKS WITH INCOMPLETE OBSERVATIONS 5

the posterior distribution

P(Ti|Wi, γi) ∝
N∏

j=1

t
wij+γij−1
ij . (2.7)

Finally, after integrating Eq. 2.2, we obtain

t̂ij = wij + γij∑N
j=1 wij + γij

(2.8)

= (1 − αi)
wij∑
j wij

+ αi
γij∑
j γij

, (2.9)

where αi =
∑N

j=1 γij∑N
j=1 wij+γij

. The first term is the maximum likelihood estimator weighted by (1 − αi) and

the second term is the transition rates from the prior distribution weighted by αi. Together they form our
empirical Bayes estimate of the transition rates.

The effect of this Bayesian estimate on the transition rates resemble modelling network flows with
teleportation. Standard teleportation allows a random walker to teleport uniformly to any node in the
network with a fixed small probability α independent of the visited node i. Teleportation is necessary
to ensure ergodicity in directed networks [22] but disregards the network structure and turns the flow
distribution dependent on the teleportation parameter α [15]. For the problem of missing observations,
teleportation is not a viable option: For low teleportation rates, the network structure dominates such
that the map equation can overfit to noise in the data (Fig. 1(c)). Conversely, for high teleportation rates,
random jumps dominate over the network structure such that the map equation can underfit and fail to
detect relevant community structures.

Interpreting the Bayesian estimate of the transition rates in terms of teleportation, Eq. (2.9) shows that
a random walker has node-dependent source and target teleportation probabilities. The random walker
chooses an observed link with probability 1 − αi, or a link in the fully connected prior network with
probability αi. In both cases, the probability to follow a link (i, j) is proportional to its observed weight
wij and prior weight γij, respectively. Thus, if node i has many out-links, the random walker will likely
follow them. Otherwise, if the number of out-links of node i is small, it will teleport with a higher
probability (Fig. 1(d)).

How the method performs depends on the parameters γ . We should choose them such that they
can reduce bias induced by incomplete observations while still not wash out regularities in the network
structure. We assume that the adjacency matrix A and the weight matrix W are decoupled and use

γij = λijcij, (2.10)

where λij is a connectivity parameter that reflects our prior assumption about connections between nodes
i and j and the weight parameter cij reflects our belief about link weights.

2.2 The connectivity parameter

We use the connectivity parameter λij = λ = ln N
N , which corresponds to the connectivity threshold of

random networks. This λ-value is the theoretical lower bound on density that guarantees almost surely a
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6 J. SMILJANIĆ ET AL.

giant connected component in the network [23, 24]. When no further node attributes are known, we assume
that the connectivity between each pair of nodes is λ = ln N

N . This choice creates a prior network strong
enough to prevent overfitting but permissive enough to detect well-supported communities, and works
well to regularize the map equation for undirected, unweighted networks [6]. The choice manifests a prior
belief that the network is connected without any community structure. When more information about
nodes is available, such as types, classes, or similar, the connectivity parameter, λij, should be adjusted
to reflect this information. We consider two concrete cases, bipartite networks and nodes annotated with
metadata.

2.2.1 Bipartite networks. Bipartite networks model interactions between two kinds of node types, A
and B, where only nodes with different types interact directly. A connectivity of λ = ln N

N between all pairs
of nodes violates the bipartite structure of the network. To preserve the bipartite nature of the network, we
set the connectivity parameter for links between same-type nodes to zero and adjust it for links between
different-type nodes.

We assume a bipartite network with NA nodes of type A, NB nodes of type B, and uniform distribution
of links between different-type nodes. As before, we pick the smallest connectivity parameter λAB such

that the resulting network is almost surely connected, λAB = ln(NA+NB)
min(NA ,NB)

[25]. The resulting bipartite prior

weight between nodes i and j, using bipartite connectivity λAB, is

γ bi
ij =

(
1 − δti tj

)
λABcij, (2.11)

where ti and tj are the types of nodes i and j, respectively, and δ is the Kronecker delta.

2.2.2 Metadata. Real-world networks often contain more information than links. For example, nodes
can have additional metadata. Metadata have primarily aided in interpreting detected communities. How-
ever, recent studies suggest that complementing network data with metadata for community detection
can help overcome limitations and uncertainties in the network structure [26–29].

We use discrete metadata to adjust the connectivity parameter. As before, we connect each pair of
nodes uniformly with connectivity λ = ln N

N . In addition, we use the metadata and reinforce connections
between nodes with the same label m by λm = ln Nm

Nm
, where Nm is the number of nodes with label m. With

metadata labels mi and mj for nodes i and j, respectively, the adjusted prior link weight is

γ meta
ij =

(
λ + δmimjλmi

)
cij. (2.12)

2.3 Weight parameter

To incorporate prior assumptions on weights into our method, we use an empirical Bayesian approach [30].
An uninformative prior, such as an exponential link weight distribution, is inadequate since it can wash
out regularities in the network structure. Instead, we assume that the data carry information about their
prior distribution and estimate prior link weights from the networks.

To derive link weights for a prior network, we adapt the so-called continuous configuration model
[14], which estimates the weight of the link from node i to j as

cij =
∑N

n=1 kin
n + kout

n∑N
n=1 sin

n + sout
n

sout
i sin

j

kout
i kin

j

, (2.13)
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MAPPING FLOWS ON WEIGHTED AND DIRECTED NETWORKS WITH INCOMPLETE OBSERVATIONS 7

where kin
i and kout

i denote observed in- and out-degrees, and sin
i = ∑

j wji and sout
i = ∑

j wij denote in- and
out-strengths for node i. The connectivity parameters defined by Eq. (2.13) preserve expected weights
of in- and out- links incident to a node. They provide higher link weights between nodes with strong
connections to their neighbours.

This method also works for unweighted and undirected networks. Undirected networks can be con-
sidered as a special case of directed networks where kout

i = kin
i = ki and sout

i = sin
i = si for all nodes i. The

relaxed continuous configuration model assigns weights cij = 1 to all links for unweighted networks. In
this case, our method presented here and the Bayesian estimate of the map equation [6] provide identical
results. While we can express the effect of the prior network analytically in the Bayesian estimate of the
map equation for undirected, unweighted networks, we can also express it as a Bayesian estimate of the
transition rates as in Eq. (2.9) and use it with the standard map equation.

We provide an efficient implementation of the Bayesian estimate of the transition rates for anyone
to download from https://www.mapequation.org. The general implementation for regularized network
flows works for unipartite and bipartite, unweighted and weighted, undirected and directed networks with
and without metadata. The code runs at native speed because it does not express the all-to-all transition
rates from the prior distribution in Eq. (2.9) as links.

3. Results

We evaluate the performance of Infomap with our empirical Bayes estimate of the transition rates in
networks with missing observations. Our focus is on weighted, directed networks with unweighted and
undirected networks as special cases. For simplicity, we restrict our analyses to networks with integer
weights and interpret them as multigraphs, such that link weights wij denote the number of observed
edges between nodes i and j. To create networks with missing observations, we sample from synthetic
and empirical multigraphs by removing an r-fraction of their multiedges uniformly at random, resulting in
reduced edge weights. For robust results, we average over 100 repetitions for each r-value. As a baseline,
we use the performance of the standard map equation and compare the number of detected communities,
partition similarity and predictive accuracy. We measure partition similarity with the adjusted mutual
information (AMI) [31] between detected and planted partition and predictive accuracy with cross-
validation.

3.1 Synthetic networks

We use the Lancichinetti–Fortunato–Radicchi (LFR) method [18] to generate a weighted directed network
with N = 1000 nodes, average node degree k = 7, and mixing parameter η = 0.4. The resulting network
has M = 31 communities and an average link weight of 4.9 with integer link weights. We have included
results for synthetic networks with different parameters in Appendix A.

To construct synthetic networks with metadata, we first assign metadata labels in perfect alignment
with the community assignments of the LFR networks. Because metadata labels and network community
structure are not always aligned [32], we assign one of the existing M = 31 metadata labels to a
μ-fraction of the nodes at random to evaluate the performance for different metadata and community
structure correlations. In this way, we can use the same network to test our empirical Bayes estimate of
the transition rates both with and without metadata.

With uniform connectivity and as long as we remove up to half of the edges, corresponding to r ≤ 0.5,
the standard map equation and the map equation with regularized network flows detect virtually the same
number of communities [Fig. 2(a)]. When we remove more than half of the data and move beyond r = 0.5,
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8 J. SMILJANIĆ ET AL.

(a) (b)

Fig. 2. Mean number of communities in synthetic weighted and directed networks with and without our empirical Bayes estimate
of transition rates. Without metadata in (a) and with metadata in (b), where a fraction μ of the nodes have randomly assigned
metadata. Results are averages over 100 network samplings.

the standard map equation begins to detect more and smaller communities. In contrast, the map equation
with regularized network flows does not detect community structure anymore. The relative weight of
the prior network increases as we remove more data and the remaining evidence is not strong enough to
support communities.

With a metadata-based Bayesian estimate of the transition rates, the fraction of removed links, r, does
not affect the number of detected communities if the correlation between metadata and planted partition,
μ, is high [Fig. 2(b)]. When we randomize half of the metadata labels, corresponding to μ = 0.5, and
move beyond the detectability point at r ≈ 0.65, we find two regimes. First, two opposing forces are
at work, the noisy network structure and the metadata, and we detect no community structure. Then,
as we approach r = 1 and almost no link observations remain in the network, we detect the partition
corresponding to the metadata labels.

Although the standard map equation detects the correct number of M = 31 communities when
we remove less than half of the observations, the AMI scores show that Infomap assigns some nodes to
incorrect communities [Fig. 3(a)]. The map equation with regularized network flows detects communities
that better match the planted communities. When we remove more than half of the observations, r > 0.5,
the standard map equation detects more communities and the AMI score decreases. In contrast, the
map equation with regularized network flows detects only one community with an AMI score of zero,
indicating that the available data is insufficient to infer community structure.

When using a metadata-based Bayesian estimate of the transition rates, our method detects the planted
partition reliably if the metadata and the planted partition match perfectly, corresponding to μ = 0
[Fig. 3(b)]. The method assigns some nodes incorrectly for μ > 0 and weaker correlations with less
aligned structural and metadata information. When many observations are missing, the performance
depends on how well the metadata align with the planted community structure.

Many communities and low AMI scores in the undersampled regime indicate that the standard map
equation returns spurious communities. To understand better how this affects the system characterization,
we use a cross-validation approach where we first split the multiedge counts of a network into training
and test multiedges such that the same edge (i, j) can occur in the training and validation data, and their
counts sum to the original observed count. Then, we infer the partition that maximizes compression in
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MAPPING FLOWS ON WEIGHTED AND DIRECTED NETWORKS WITH INCOMPLETE OBSERVATIONS 9

(a) (b)

Fig. 3. Adjusted mutual information in synthetic weighted and directed networks with and without Bayesian estimate of the transition
rates. Without metadata in (a) and with metadata in (b), where a fraction μ of the nodes have randomly assigned metadata. Results
are averages over 100 network samplings.

the training network with Infomap and calculate the test network’s description length using that partition.
If the partition captures the structure of the training network well, we expect that it also compresses
the description length in the test network. However, if insufficient data are available in the training
network, Infomap overfits and returns a partition that inaccurately describes the structure of the test
network, resulting in low compression. Since the modular description length depends on the number of
link observations [6], we construct balanced two-fold splits. For a multigraph with m observed edges,
we choose m

2 edges uniformly at random and without replacement for the training network and place
the remaining m

2 edges in the test network. Because this split induces further undersampling, we cannot
compare the link-removal performance with the previous analysis that started with a complete network.
Nevertheless, we can use the results to provide more insights into how each method performs in the
undersampled regime.

To quantify the level of compression that a partition M achieves in the test network, we consider the
relative codelength savings, the codelength for partition M compared to the one-module solution M1 that
assigns all nodes to the same module, l = 1 − L(M)

L(M1)
. Although the standard map equation does not find

the optimal partition under incomplete observations, the results indicate that it captures some regularities
and achieves positive codelength savings [Fig. 4(a)]. However, when the codelength savings are negative,
a correct delineation of the network structure is likely infeasible. The map equation with regularized
network flows and uniform connectivity achieves better compression up until r ≈ 0.4, indicating that
it better captures the network structure. Beyond this point, and in the regime where the standard map
equation detects partitions with negative compression, the map equation with regularized network flows
without metadata information assigns all nodes to the same community, resulting in no compression and
codelength savings of zero [Fig. 4(a)].

The map equation with metadata-based Bayesian estimate of the transition rates detects partitions that
capture the network regularities well and provide positive codelength savings, even when the metadata
labels do not match the planted community assignments for a moderate fraction of the nodes, for example,
μ = 0.15. [Fig. 4(b)]. However, when the correlation between metadata and planted partition is weak
(μ = 0.5), and many observations are missing, the method cannot identify significant communities
anymore.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/9/6/cnab044/6458733 by guest on 22 D
ecem

ber 2021



10 J. SMILJANIĆ ET AL.

(a) (b)

Fig. 4. Codelength savings in synthetic weighted and directed networks with and without regularized network flows. Without
metadata in (a) and with metadata in (b), where a fraction μ of the nodes have randomly assigned metadata. Results are averages
over 100 network samplings.

3.2 Empirical networks

We analyse the performance of the map equation with and without regularized network flows on six
empirical networks from different domains where four of the networks are weighted, and three are
directed.

Sociopatterns The social network of recorded interactions between female and male students in a high
school in Marseille organized as bipartite network [33]. The students are assigned to
one of nine classes which we use as metadata.

CoRA The network covers citations between computer science research papers [34]. The papers
are classified into nine different research topics that we use as metadata.

Industry The network contains companies that are connected if they appeared together in a busi-
ness story [34]. We use Yahoo!’s 12 industry sectors as metadata.

cit-HepTh The network contains citations from within arXiv’s HEP-TH section [35]. We consider
only published articles and use information about the journals as metadata.

Pokémon Using information from all seven generations of Pokémon, we create a network by
connecting two Pokémon who share the same abilities [36]. The primary type of the
Pokémon is used as metadata.

Openflights The network contains links between non-USA airports [37]. We use countries as
metadata.

Table 1 provides summary information of topological properties of the networks and their metadata.

We analyse each of the six empirical networks and report the number of communities (Fig. 5) and
relative codelength savings (Fig. 6). However, because there is no ground truth partition for empirical
data, we cannot use AMI to evaluate our results.
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MAPPING FLOWS ON WEIGHTED AND DIRECTED NETWORKS WITH INCOMPLETE OBSERVATIONS 11

Table 1 Summary of network data. The column Kind denotes if the network is directed (D)
or undirected (U). The notations w and M refer to the average link weight and the number
of metadata categories in the network, respectively. The last column reports the AMI between
metadata and partition detected by the standard map equation in the complete network

Network Nodes Links Kind w M AMI

Sociopatterns [33] 143+175 2265 U 1.33 9 0.9
CoRA [34] 3385 22092 D 1.00 9 0.3
Industry [34] 1778 14154 U 2.79 12 0.2
cit-HepTh [35] 4378 55186 D 1.00 9 0.0
Pokémon [36] 743 18184 U 1.10 18 0.3
Opeflights [37] 964 8850 D 1.48 97 0.4

The empirical networks behave like the synthetic networks when analysed with the standard map
equation and the map equation with regularized network flows. In the complete networks, and when we
remove only a small fraction of the observations, the methods detect partitions with a similar number of
communities. When we remove more observations and enter the undersampled regime, the standard map
equation detects more and smaller communities. In contrast, the map equation with regularized network
flows without metadata information detects no community structure (Fig. 5).

The empirical networks enter the undersampled regime at different points. In the Pokémon and
Industry networks, the map equation with regularized network flows detects communities even after
removing 70% of the observations. In the Pokémon network, the number of communities detected by the
map equation with regularized network flows increases slightly with the fraction of removed observations
before it drops sharply to 1 at r = 0.8 and no community structure is detected anymore. However, the
community structure in the cit-HepTh network is sensitive to undersampling, and the map equation with
regularized network flows cannot detect communities if we remove more than 5% of the observations.

The cross-validation results show that partitions with noisy substructures detected by the standard
map equation sometimes compress flows on the test network better than the one-level partition. With more
data missing, eventually, the detected partitions lead to negative codelength savings, and the one-level
partition offers a better description of the network flows (Fig. 6). The map equation with teleportation
does not suffer from this issue. The mechanism we have implemented prevents overfitting and instead
returns the one-level partition when not enough data is available to support community structure in the
network.

How well metadata labels align with the network structure determines the performance for the map
equation with regularized network flows using metadata. We use the partitions detected by the standard
map equation on the complete networks as a proxy for the network structures and report the AMI with
the metadata labels in Table 1. For example, in the Sociopatterns network, the metadata contains useful
information and improves the performance in the undersampled regime. The number of communities
remains the same for all r-values [Fig. 5(a)] and, as the cross-validation results show, we achieve high
compression in the test network [Fig. 6(a)]. In contrast, in the cit-HepTh network, where journals do
not support citation patterns between articles, the metadata does not reveal significant communities
in the network structure [Fig. 5(d)]. Similarly, in the Pokémon network where metadata labels align
only weakly with community structure, we observe lower performance than for the map equation with
regularized network flows without employing metadata. When we remove almost all link observations,
using uncorrelated metadata can lead to negative codelength savings [Fig. 6(d and e)].
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Mean number of communities in empirical networks obtained by the standard map equation, the map equation with tele-
portation and uniform connectivity, and the map equation with metadata-based Bayesian estimate of the transition rates. Results
are averages over 100 network samplings.

In the remaining three networks, even though the correlation between metadata and community
structure is low, we find that the map equation with regularized network flows benefits from employing
the metadata in the undersampled regime. The map equation with metadata-based Bayesian estimate of the
transition rates detects fewer communities than the other two methods. The higher codelength savings
indicate that the detected partitions better capture the structural patterns in the networks by avoiding
overfitting to weakly supported substructures [Fig. 6(b, c and f)].

Our analyses show that using regularized network flows with or without metadata prevents overfitting
in the undersampled regime. Instead of returning spurious partitions from sparse observations, the map
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Codelength savings in test networks obtained by the standard map equation, the map equation with teleportation and uniform
connectivity, and the map equation with metadata-based Bayesian estimate of the transition rates. Results are averages over 100
network samplings.

equation with regularized network flows returns the one-level partition, indicating insufficient evidence to
support any community structure. To detect more regularities with better compression, the metadata-based
Bayesian estimate of the transition rates detects more regularities and achieves better compression when
correlations between metadata and the network structure are moderate or higher. With low correlations,
the map equation with regularized network flows with metadata can underfit, and the map equation with
regularized network flows without employing metadata performs better.

Overall, we recommend the standard map equation for complete network data or when communities
from missing links are not problematic. When spurious communities can harm the analysis, the map
equation with regularized network flows provides a robust approach.
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4. Conclusion

We have equipped the flow-based map equation framework with a regulatory mechanism to deal with
missing link observations in weighted and directed networks. By deriving an empirical Bayes estimate of
the transition rates that employs a relaxed continuous configuration model, the network flow dynamics
account for the uncertainty of observed node degrees and strengths. The empirical Bayes estimate of
the transition rates can incorporate additional information about node types and attributes, enabling
extensions to bipartite networks and networks with metadata. Our adaptable solution also supersedes
artificial teleportation for mathematically sound flow modelling on directed networks.

We have implemented the map equation with empirical Bayes estimates of the transition rates in
Infomap and analysed synthetic and real-world networks to evaluate the performance. Our results show
that regularizing the network flows prevents overfitting in undersampled networks, even when a substantial
fraction of the data are missing. Incorporating metadata to reflect prior knowledge about the network can
compensate for missing link observations when the metadata correlate with the network structure. Our
results suggest that the map equation with an empirical Bayes estimate of the transition rates provides
an effective way to identify robust communities in weighted and directed networks with incomplete
observations.

Code

We have implemented the map equation with our Bayesian estimate of the transition rates in Infomap.
Full documentation of Infomap, including tutorials, instructions and visualization tools is available at
https://www.mapequation.org.
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A. Results for different configurations of synthetic networks

To understand how the Bayesian estimate of the transition rates affects community detection in networks
with different structures, we test the performance on synthetic networks with various sizes, densities, and
community strengths. We create six weighted directed LFR networks with various number of nodes, N ,
average degree, k and mixing parameter, η, then randomly remove an r-fraction of the link observations
and detect communities with the standard map equation and the map equation with regularized network
flows.

(a) (b)

(c) (d)

(e) (f)

Fig. A.1. Mean number of communities in synthetic weighted and directed networks with and without regularized network flows.
Dotted line indicates number of planted communities.
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(a) (b)

(c) (d)

(e) (f)

Fig. A.2. Adjusted mutual information in synthetic weighted and directed networks with and without regularized network flows.

Our results show similar trends in terms of robustness to noise in all six networks (Figs A.1 and A.2).
In the undersampled regime, the performance of the standard map equation decreases fast as the number
of missing observations increases. The map equation with regularized network flows undergoes a sharp
transition from detecting robust communities to not detecting any community structure. The uninformative
assumption that a network has no modular structure prevents the map equation with regularized network
flows from detecting modular regularities in networks with weak community structure [Fig. A.2(f)].
However, in sparse networks with stronger support for community structure, we find that our Bayesian
estimate of the transition rates can improve detection accuracy significantly [Fig. A.2(c)].
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