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Memory in network flows and its effects on
spreading dynamics and community detection
Martin Rosvall1, Alcides V. Esquivel1, Andrea Lancichinetti1,2, Jevin D. West1,3 & Renaud Lambiotte4

Random walks on networks is the standard tool for modelling spreading processes in social

and biological systems. This first-order Markov approach is used in conventional community

detection, ranking and spreading analysis, although it ignores a potentially important feature

of the dynamics: where flow moves to may depend on where it comes from. Here we analyse

pathways from different systems, and although we only observe marginal consequences for

disease spreading, we show that ignoring the effects of second-order Markov dynamics

has important consequences for community detection, ranking and information spreading.

For example, capturing dynamics with a second-order Markov model allows us to reveal

actual travel patterns in air traffic and to uncover multidisciplinary journals in scientific

communication. These findings were achieved only by using more available data and making

no additional assumptions, and therefore suggest that accounting for higher-order memory in

network flows can help us better understand how real systems are organized and function.
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A central objective of network science is to connect
structure with dynamics in integrated social and biologi-
cal systems1–4. In this data-driven approach, the complex

structure is represented with a network of nodes and links, and
the dynamics are modelled with random flow on the network5–9.
The flow can represent ideas circulating among colleagues,
passengers travelling through airports or patients moving
between hospital wards. Conventional network models
implicitly assume that where the flow moves to only depends
on where it is, and that this first-order Markov process suffices for
performing community detection, ranking and spreading
analysis. Shannon10 introduced higher-order memory models in
1948, and there is a substantial body of work on analysing
memory effects in, for example, time-series analysis for
forecasting financial markets11, correlated random walks for
predicting animal movements12 and exponential random graph
models for capturing social networks13. Moreover, there is recent
evidence that memory is necessary for accurately predicting web
traffic14,15, for improving search and navigation in information
networks16–18 and for capturing important phenomena in the
spread of information19–23 and epidemics24–29. Nevertheless,
little is known about memory effects on community detection,
ranking and spreading analysis, three principal methods in
network science. This issue raises a fundamental question that
allows us to better understand social and biological systems: what
are the effects of ignoring higher-order memory in network flows
on community detection, ranking and spreading?

To comprehend the effects of memory, we use networks in
which the direction of flow depends on the weights of the
outgoing links and, importantly, where the flow comes from. In
this study, we focus on second-order Markov dynamics such that
the next step depends on the currently and previously visited
node, which corresponds to a second-order Markov model of
flow. As an illustration, we use air traffic between airports of

different cities with link weights derived from real itineraries
(Fig. 1). When we take first-order Markov dynamics into account
in the conventional network approach, nodes i represent cities
and links i-j represent flight legs, with weights W(i-j)
proportional to the passenger volume between cities. The
dynamics are modelled with weighted steps between nodes on
networks without memory and correspond to a first-order
Markov model of flow, as the direction of flow only depends
on the currently visited city (Fig. 1a). This conventional approach
is used in a wide range of problems, from ranking nodes6 and
finding communities30,31 to modelling the spread of
epidemics32,33 and rumours34. However, this approach ignores
where the passengers come from, and therefore the direction of
passenger flow is independent of the incoming traffic. When we
take second-order Markov dynamics into account, on the other

hand, memory nodes ij
!

represent flight legs and links ij
!! jk

!

represent connected flight legs, with weights Wð ij
!! jk

!Þ
proportional to the passenger volume between cities and
conditional on the previously visited city. In this way, a city is
represented by a physical node j with multiple memory nodes ij

!
,

one for each incoming flight leg from city i, such that arriving in
Chicago from Seattle corresponds to arriving at memory node

Seattle Chicago
!!!!!!!!!!!

of physical node Chicago. By modelling the
dynamics on this network with memory, such that steps depend
on the currently and previously visited city, we can better reveal
actual travel patterns (Fig. 1b).

Although we considered passengers moving between cities in
this illustration, we have analysed six diverse systems in detail,
including researchers navigating between journals and patients
moving between wards. We find that taking second-order Markov
dynamics into account is important for understanding the actual
dynamics, because random dynamics on networks obscure
essential structural information. After deriving how we model
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Figure 1 | First-order Markov dynamics distort real constraints on flow. (a) In a first-order Markov approach, we model passengers’ travel to a city to be
proportional to the observed volume of traffic to that city, and irrespective of where the passengers come from. (b) In a second-order Markov
model, passengers’ travel to a city is still proportional to the traffic volume, but also dependent on where the passengers come from. In this example,
out-and-back traffic to Chicago only dominates overtransfer traffic when second-order Markov dynamics are taken into account. (c,d) Journal citation
flow shows the same memory effect. Citation flow from four different journals to PNAS is mostly shown to return to the same journal or continue
to a related journal only when second-order Markov dynamics are taken into account. The percentages represent the relative return flow.
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the dynamics and quantify their constraints, we show how the
second-order Markov constraints on dynamics influence three
important branches of network science: community detection,
ranking and epidemic spreading.

Results
Modelling second-order Markov dynamics. For each system, we
model the dynamics as a stochastic process. We represent the n
different components of the system with physical nodes
i ¼ 1,2,y,n and let Xt denote the state or position of an entity of
flow at time t. With this notation, the flow through the system
corresponds to a walker stepping between nodes, which can be
described by an indexed sequence of random variables X1X2yXt.
In general, the probability that the flow visits node i at time t þ 1
depends on the full history of the dynamic process:

Pði; tþ 1Þ % PðXtþ 1 ¼ itþ 1Þ
¼ P Xtþ 1 ¼ itþ 1 Xt ¼ it;Xt& 1 ¼ it& 1; :::;X1j j ¼ i1ð Þ;

ð1Þ

for all i1,i2,y,it,itþ 1Ai ¼ 1,2,y,n. In network science, it is
common to assume that the direction flow takes in a dynamic
process depends only on the current state and not on time:

Pði; tþ 1Þ ¼PðXtþ 1 ¼ itþ 1 jXt ¼ itÞ
¼PðX2 ¼ itþ 1 jX1 ¼ itÞ:

ð2Þ

In other words, the dynamic process is Markovian or a first-
order Markov process (M1), that is, it is assumed that knowledge
about the relative weights of links between the nodes is sufficient
to model the dynamic process in the system. All this information
is captured in the transition matrix P with elements of the form

Pij ¼ pði! jÞ ¼ Wði! jÞP
k Wði! kÞ ; ð3Þ

measuring the probability that a random walker at node i steps to
node j and normalized such that

P
j p(i - j)¼ 1. Accordingly,

the probability of finding the random walker at node j at time
tþ 1 is

Pðj; tþ 1Þ ¼
X

i

Pði; tÞpði! jÞ: ð4Þ

Many ranking6,35 and community detection30,31 methods, as
well as epidemic models9 build directly on this first-order Markov
process. In fact, also maximal-entropy random walks are
Markovian, although they build on modified transition
probabilities36,37.

As we argue below, random dynamics on networks cannot
accurately capture empirical flow pathways. As a result, a first-
order Markov modelling can fail to capture important phenom-
ena in a broad range of complex systems32,33. To capture higher-
order Markov effects in flow pathways24,26–28, we use memory
networks. A memory network consists of memory nodes; each
memory node represents the current state of the walker, the
currently visited node and the previous step or steps. The order of
the Markov process determines the number of steps that
represent a state. For example, in a second-order Markov
process (M2), the walker’s next step depends on the currently
visited node j and the previously visited node i. In this case, the
memory nodes ij

!
correspond to directed links between physical

nodes in the standard network. Accordingly, the network of
memory nodes is a form of line graph of the network without
memory (see Supplementary Note 1). In a third-order Markov
process, the walker’s next step depends on the currently visited
node j and the two previously visited nodes h and i, and the
memory nodes hij

!!
correspond to three-step pathways between

physical nodes in the standard network. Here we focus on a
second-order Markov process, but the procedure can in principle

easily be generalized to higher-order Markov processes, provided
that sufficient data are available to fit the model.

The dynamics of a second-order Markov walker can now
simply be modelled as a Markov process on the memory network,
instead of a non-Markov process on the physical nodes. For a
second-order Markov process, the dynamics are encoded by a
transition matrix with elements of the form

pð ij
!! jk

!Þ ¼ Wð ij
!! jk

!
Þ

P
l Wð ij
!! jl

!Þ
; ð5Þ

measuring the probability that the walker steps from j to k if it
came from i in the previous step and normalized such thatP

k pð ij
!! jk

!Þ ¼ 1. These transitions can therefore be inter-
preted as movements between links. However, even in undirected
networks, we must use two memory nodes for each pair of
connected nodes i and j, as the memory nodes encode the time
ordering of the visits. In any case, the probability of finding the
random walker at memory node jk

!
at time tþ 1 is

Pð jk!; tþ 1Þ ¼
X

i

Pð ij
!

; tÞpð ij
!! jk

!Þ: ð6Þ

Consequently, the probability of finding the random walker at
physical node k at time tþ 1 in a second-order Markov process is

Pðk; tþ 1Þ ¼
X

j

Pð jk
!

; tþ 1Þ ¼
X

ij

Pð ij
!

; tÞpð ij
!! jk

!
Þ: ð7Þ

Constraints on flow captured in real-world pathway data. We
collected pathway data with sequences of steps for the six well-
studied and diverse systems presented in Table 1: flight itineraries
between US airports, the airports aggregated in cities, chains of
citing articles aggregated in journals, movements of patients
between hospital wards in Stockholm, GPS-tracked taxis in San
Francisco and chains of forwarded and replied emails (see
Supplementary Note 1). We chose these systems because their
pathway data were readily available and because the outcomes of
their analyses have important consequences. To explain the
effects of memory, we analysed the systems with networks with
and without memory.

The pathways in Fig. 1 illustrate how second-order Markov
dynamics strongly direct flow in two real-world examples. With
data from actual itineraries, Fig. 1a,b show trips to/from Chicago
modelled with first-order Markov dynamics in a and with second-
order Markov dynamics in b (see Methods). When only the
relative proportions of departures from Chicago determines the
next destination in the standard network representation, the trips
mix randomly. With a second-order Markov model, however,
passengers flying to Chicago are most likely to return to the city
from which they came. Similarly, Fig. 1c,d show the journal
citation flow to/from the journal PNAS with first-order Markov
dynamics in c and with second-order Markov dynamics in d. The
journal citation flow is a proxy for how researchers navigate
scholarly literature, derived from a random walker moving
between articles following citations and mapped onto journals.
When only the fraction of citations from PNAS to the specialized
journals determines which journal the walker reads next, the
pathways mix randomly. Instead, with second-order Markov
dynamics taken into account, after following a citation in an
article published in a more specialized journal to an article in
PNAS, the walker tends to return to an article published in the
same specialized journal or field. Defined as the relative amount
of flow that returns to the same physical node after two steps, the
two-step return rate is twice as large when second-order Markov
dynamics is accounted for in citation flow and eight times as large
in passenger flow. Except for the taxi data (taxis take us to
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destinations away from where we were), we found that second-
order Markov dynamics reveal a dramatically higher return flow
in all studied systems (Table 1).

To quantify the second-order Markov constraints on flow, we
measured the entropy rate of a random walker on a network with
and without memory10. The entropy rate measures the
conditional entropy, the uncertainty of the next step of the flow
given the current state, weighted by the stationary distribution. In
a first-order Markov process, the entropy rate is the conditional
entropy at each physical node weighted by the stationary
distribution:

HðXtþ 1 jXtÞ ¼ &
X

jk

pðjÞpðj! kÞlog pðj! kÞ; ð8Þ

where p is the stationary solution of the random process. In a
second-order Markov process, the entropy rate is the conditional
entropy at each memory node weighted by the stationary
distribution:

HðXtþ 1 jXtXt& 1Þ ¼ &
X

ijk

pð ij
!Þpð ij

!! jk
!Þlog pð ij

!! jk
!Þ: ð9Þ

The more effect memory has, the more the conditional entropy
will decrease in the second-order Markov model. For the analysed
networks, the entropy rates decrease by one to two bits when
second-order Markov dynamics are taken into account (see
Table 1). To put this decrease in perspective, we can compare
with an unweighted network, in which the typical number of
neighbours halves for each bit the entropy rate decreases. That is,
were the links unweighted, the observed decrease in entropy rates
would correspond to overestimating the effective number of
neighbours by 200–400%. The nodes with the strongest memory
effect have high entropy with first-order and low entropy with
second-order Markov dynamics. For many nodes, memory
greatly reduces the effective connectivity and reveals the
constraints on flow (Fig. 2).

Second-order Markov constraints on flow are statistically
significant. To verify that our results are based on sufficient data,
we performed bootstrap resampling of pathways for all summary
statistics and surrogate data testing of the entropy rate to estimate
the Markov order38 (see Fig. 2, Methods and Supplementary
Note 2). All summary statistics in Table 1 and a majority of
influential nodes in all networks except patients and emails show a
significant second-order Markov effect that cannot be explained
by noise. Although we focus on second-order Markov dynamics in
this paper, it is interesting to reflect on potential effects of higher-
order Markov models. For example, a second-order Markov
model captures real dynamics with one-step memory, including
the two-step return rate, a third-order Markov model captures
two-step memory, including the three-step return rate, and so on.
In principle, we could go to any order n for higher accuracy. In
practice, however, higher-order Markov models are more complex

and demand many long pathways to statistically separate real
effects of memory from insufficient data15. For the air-traffic data,
we have enough long pathways to measure the entropy rate of a
higher-order Markov model. When we estimated the average
amount of information necessary to determine the next
destination of passengers at airports, we measured a 0.3-bit
decrease from second to third order compared with 1.1 bits from
first to second order (see Supplementary Note 2 and
Supplementary Fig. 3). Although both results are statistically
significant according to a surrogate data test, this small difference
suggests that a second-order Markov model captures most of the
salient features set by the constraints on flow in air-traffic, namely,
that passengers tend to return to the city from which they came.

We now turn to the consequences of ignoring higher-order
memory when analysing network flows in social and biological
systems. To study the consequences, we modified and generalized
three commonly used network techniques to capture the effects of
memory in a second-order Markov model: the map equation for
community detection, PageRank for ranking and two compart-
mental models for spreading. We begin with community
detection, as simplifying and highlighting important structures
of the dynamics allow us to better understand and explain the
effects of second-order Markov dynamics on ranking and
spreading dynamics.

Memory affects community detection. We used the map equa-
tion framework to identify overlapping modules with long flow
persistence times30,39 in networks with and without memory (see
Methods and Supplementary Note 3). This information-theoretic
method measures how efficient a modular description is in
compressing the pathways of a random walker. The more
structural information that can be exploited, the better the
compression10. We measured how well modules identified with
first- and second-order Markov dynamics can compress the more
detailed model of the actual pathways (see Methods). Table 1
shows that second-order Markov dynamics allow for better
compression, because random dynamics on networks obscure
essential structural information. We quantified this structural
information in terms of module size and level of module overlap.
Measured as the average visit frequency of a random walker in
each module, and weighted by the same visit frequency to reduce
the effect of small modules, we report the effective module size for
all networks in Table 1. Community detection of passenger traffic
modelled as first-order Markov dynamics only identifies major
geographic regions, such as the West, the South, the Mid-West
and the East. Second-order Markov dynamics reveal much more
detailed travel patterns and the typical module size is more than
five times smaller. Analysing the hospital data, we found that
patients are sent back to the previously visited ward more than
half of the time, or more than three times as often as asserted by a

Table 1 | Summary of second-order Markov effects in real-world networks.

Network Number
of nodes

Two-step
return (%)

Three-step
return (%)

Entropy
rate (bits)

Module
size (%)

Module
assignmt

Compression
gain (%)

Ranking
diff. (%)

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1-M2 M1-M2

Airports 464 17,983 5.7 47 2.1 0.63 5.2 3.4 93 5.1 1.2 6.2 13 8.2
Cities 413 15,368 6.5 48 2.8 0.62 4.7 3.5 32 5.3 1.8 3.7 5.2 3.7
Journals 1,983 201,349 11 21 4.7 5.4 4.5 3.5 14 15 1.8 3.4 4.7 9.7
Patients 402 4,987 16 54 1.9 3.4 3.0 1.0 7.3 1.9 5.0 4.7 30 22
Taxis 416 2,763 20 10 6.8 10 2.2 1.1 3.1 5.8 1.5 1.7 7.1 6.5
Emails 144 1,432 14 58 5.2 2.7 3.0 1.3 12 5.8 1.3 3.0 26 18

In Supplementary Tables 1 and 2, we provide 10th and 90th percentiles from bootstrap analysis.
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standard network approach. As a result, the typical module
within which patients move is significantly smaller when second-
order Markov effects are taken into account. Memory also
impacts information spreading through email communication.
We found that the two-step return rate was four times higher
with second-order Markov dynamics, thus revealing an
organization with halved module sizes. We used the map
equation framework, because it was straightforward to
generalize its mathematics to second-order Markov dynamics,
but the results are, in principle, universal for any method
operating on the dynamics on a network31. The universality is
manifested in the direct effect memory in network flows has on
the spectral gap40,41. If memory favours spread across a system,
the spectral gap increases and, the other way around, if memory

confines flow, the spectral gap decreases. Overall, in the systems
analysed here second-order Markov dynamics reveal a higher
return flow that confines flow in smaller and more informative
modules.

Memory affects the level of module overlap. In air traffic
between US cities modelled with first-order Markov dynamics,
both Las Vegas and Atlanta are assigned to a single major
module, as shown in Fig. 3a, but second-order Markov dynamics
reveal their different flow patterns. Atlanta, with many transfer-
ring passengers and a relatively low two-step return rate (15%
with second-order and 1.8% with first-order Markov dynamics),
is assigned to only one major module shown in red in Fig. 3b. In
contrast, Las Vegas, with traffic dominated by returning tourists
(67% two-step return rate with second-order and 3.7% with
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Figure 2 | Significant second-order Markov constraints on flow. (a–f) First- and second-order conditional entropy for all nodes of the six analysed
networks. Blue nodes show a significant memory effect, because the null hypothesis that the data are generated from a first-order Markov model can be
rejected. Red nodes do not show a significant effect. The memory effect is the difference in entropy between a first- and second-order Markov
model. Las Vegas, among all cities, shows the strongest memory effect. Traffic is dominated by visitors who return to the city from which they came. In the
other extreme, nodes that we could not significantly distinguish from a first-order Markov model typically have low connectivity and relatively small
entropies.
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Figure 3 | Memory affects modular overlap in air traffic between US cities. Major modules of Las Vegas and Atlanta with first-order Markov dynamics
in a and second-order Markov dynamics in b. Link colours represent modules and link thicknesses represent passenger volume.
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first-order Markov dynamics), is assigned to eight major modules,
as shown in Fig. 3b (see Methods). Similarly, Supplementary
Table 3 shows that second-order Markov dynamics can reveal
multidisciplinary journals in the scholarly literature. For example,
an ecologist reading an article published in PNAS will most
probably next read an article published in an ecological journal, as
shown in Fig. 1d and confirmed by the increased two-step and
three-step return rates. This memory effect changes the perceived
organization of the scholarly literature. With first-order Markov
dynamics, PNAS is assigned to a single biological field. With
second-order Markov dynamics, however, PNAS is assigned to
five fields, including cell biology, ecology and mathematics.
Likewise, the multidisciplinary journal Science is assigned to ten
fields with second-order compared with one field with first-order
Markov dynamics. Contrarily, field-specific journals, such as
Ecology or Plant Cell, are clustered in single fields both with first-
and second-order Markov dynamics. Measured as the average
number of module assignments per physical node, we report the
module assignments for all networks in Table 1. Compared with
first-order Markov analysis in the systems analysed here,
community detection with second-order Markov dynamics
reveals system organizations with more and smaller modules
that overlap to a greater extent.

The memory effects on community detection have interesting
network-theoretical implications. Community-detection methods
typically identify modules with stronger internal than external
connections42,43 or with relatively long flow persistence
times30,31. A problem with these methods is that they tend to
assign each node to a very limited number of modules, in contrast
to the observation that real modules often show pervasive
overlap44–46. Rather than being a shortcoming of the algorithms,
our results show that this problem can be a result of distorted
modular dynamics in standard networks that prevent the
methods from capturing the underlying dynamics and
uncovering the actual modules, as with the air traffic example
in Fig. 3. Interestingly, some heuristic algorithms for finding
highly overlapping modules in standard networks can be seen as
trying to account for second-order Markov dynamics (see
Supplementary Note 3). The clique percolation47 and link
clustering44 methods are known as topological methods that
operate on the network structure without inducing flow on the
links. If we take a flow perspective, the percolation of cliques can
be seen as restricting flow to stay within connected cliques47. In
addition, the coupling of links by neighbour similarity can be seen
as prolonging flow persistence times in highly connected
modules44. As we show in the Methods section, they are
reasonably good at identifying overlapping communities of
second-order dynamics aggregated in undirected standard
networks. Nevertheless, using empirical data of flow pathways
rather than clever assumptions has several advantages.
Aggregating links in standard networks inevitably destroys
information that cannot be fully recovered. As the benchmark
test in Methods shows, a method that operates directly on the
flow pathways can achieve superior results.

Memory affects ranking of nodes. When going from rankings
based on counting links to measuring the average visit frequency
of a random walker on a standard network,that is, calculating the
PageRank6, the importance of neighbours becomes evident.
Similarly, when going to PageRank on a network with second-
order memory, the amount of flow received from neighbours also
depends on the flow’s origin15,48. We define a generalized second-
order PageRank as the stationary solution of equation (6)

p jk
!" #
¼
X

i

p ij
!" #

pð ij
!! jk

!Þ: ð10Þ

Solving equation (6) requires finding the dominant eigenvector
of the L' L transition matrix pð ij

!! jk
!Þ, where L is the number

of memory nodes. Note that this matrix is asymmetric even if the

original network is undirected, as a transition ij
!! jk

!
does not

exist in the opposite direction jk
!! ij

!
, even if each link is

bidirectional. After finding pð jk!Þ, the centrality of physical nodes
in the original network is given simply by

p kð Þ ¼
X

j

p jk
!" #
¼
X

k

p jk
!" #

; ð11Þ

where the second equality holds because of conservation of
probability (see Methods for details on ergodicity).

To illustrate the effect of second-order Markov dynamics on
ranking and on PageRank in particular, we focus on the journal
citation network (see Supplementary Note 4 for analytical
results). This example has practical applications because PageR-
ank is a popular measure for ranking the scientific importance of
journals49. In the citation network, we observe that 10% of the
flow is re-allocated when moving from a first-order to a second-
order Markov model (see Table 1). Some journals benefit from
this re-allocation and some do not. The interesting question is:
which ones gain and why?

Figure 4a shows why some journals increase their ranking from
a first- to a second-order Markov model. For example, Ecology
gains in total flow, which can primarily be explained by the
amount of flow coming from high-quality journals (green), the
amount of internal flow coming from journals without crossing
community boundaries (dark blue) and the amount of flow
returning after two steps (dark red). We consider high-quality
flow to be the flow from the top ten journals. Flow from these
journals comprises 1/3 of all flow in the system. For Ecology, there
is an increase in return flow and internal flow when moving from
a first- to a second-order Markov model, as well as a slight
increase in flow from the top ten journals.

In contrast, the large multidisciplinary journals receive less
flow from other top journals. In a first-order Markov model, they
leak flow between communities and boost each other. For
example, Science in a first-order Markov model receives flow from
and then redistributes flow to journals in multiple fields, even if
no readers would cross those field boundaries. In contrast, Science
in a second-order Markov model mainly receives flow from and
redistributes flow to journals within the same fields. As a
significant fraction of the flow that leaks between fields in a first-
order Markov model reaches multidisciplinary journals, they
receive less flow in a second- relative to a first-order Markov
model. As Fig. 4b illustrates, journals that increase from a first- to
a second-order Markov model almost always see an increase in
the flow from their primary community (internal flow). In
general, journals that do not depend on leaking flow between
modules gain flow, and journals that do, including multi-
disciplinary journals, lose flow, when two-step memory is taken
into account.

We now turn to discussing the advantages of using a second-
order Markov model for ranking journals. As we analyse rankings
designed to capture dynamics, the issue with leaking flow of a
first-order Markov model directly provides a reason for preferring
a second-order Markov model. However, leaking flow is also
indirectly associated with another important reason for preferring
a second-order Markov model. All rankings are subject to
gaming, and a good ranking ought to be difficult to manipulate.
For example, the journal impact factor50, which simply counts the
number of citations a journal receives in a given period of time,
and corresponds to a zero-order Markov model, can easily be
manipulated by editorial policies that encourage self-citations51.
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A first-order Markov model, in particular one that ignores
self-citations49, is more difficult to exploit, because the value
of a citation depends on the ranking of the citing journal. As
important journals need to be cited by important journals,
insignificant journals cannot directly boost their own
ranking. However, leaking flow is a weak point of this first-
order ranking. For example, Fig. 1c illustrates that the first-order
citation flows mix and leak from the ecology journals to the
molecular biology journals through multidisciplinary PNAS.
In this way, citations from ecology journals to multi-
disciplinary journals will indirectly boost molecular biology
journals. For improving the ranking of the citing journal,
leaking flow therefore creates a potential incentive to reduce the
number of citations to multidisciplinary journals. This citation
bias works against the principle that citations should go to the
best work, and can have a negative influence on the quality of
the ranking.

The problem caused by leaking flow is minor for a second-
order ranking, as citation flows to multidisciplinary journals
tend to return and stay within the citing field. This effect not
only explains why multidisciplinary journals lose and field-
specific journals gain when going from a first- to a second-order
model as shown in Fig. 4b, it also reduces the influence on
ranking caused by strategically excluding citations to multi-
disciplinary journals. For example, although the ranking of
Ecology improves by removing citations to Science and PNAS,
both with a first- and a second-order model, the effect is three
times smaller with the second-order model. That is, a second-
order Markov model for ranking journals is more robust to
manipulation.

Memory and spreading processes. Previous work has considered
temporal and memory effects on spreading by modelling time-
respecting paths in temporal networks of contacts22,23,52 and
bidirectional paths in mobility networks of commuters27,28,53,54.
Our objective is to quantify the full effect of second-order Markov
dynamics in general mobility patterns. Therefore, here we model
spreading by considering unrestricted second-order Markov
processes obtained from empirical pathways.

We considered two classical models for spreading processes9: a
meta-population model that we implemented for the cities and is
related to disease spreading, and a simpler model for spreading of
ideas or rumours that we studied on the email data set. Both
models are stochastic compartmental models. In the meta-
population model we use SIR dynamics, and in the simpler model
we use SI dynamics. S, I and R refer to different categories of
individuals: susceptible individuals (S) are healthy individuals
who have not been touched by the infection; infected individuals
(I) have been reached by the epidemic and in turn can transmit
the infection to other individuals; and recovered individuals (R)
are those who reach immunization after being infected and
cannot spread the disease anymore.

In the meta-population model, we observe that using a second-
order Markov process has a negligible effect on the size of the
epidemic, also known as the attack rate, and that it only slightly
tends to slow down the spreading process. In contrast, in the
simpler model we observe that second-order Markov dynamics
significantly slow down the spreading process. We conclude that
we only observe significant memory effects on the spreading
dynamics when the path dependence is preserved at transmission.
For the cities data set the effect of second-order Markov dynamics
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is negligible, because memory is lost at transmission between
random individuals in cities and also because travellers do not
return at sufficiently high rate compared with pure commuting
traffic27–29,53 to limit the number of disease introductions in
cities55. Below we provide a more detailed discussion.

First we consider modelling spreading with SIR dynamics and
meta-populations for the cities data set. The model works in two
steps, similar to the reaction–diffusion model proposed in ref. 56.
During the reaction step, each infected individual can recover
with probability m and each susceptible individual can get infected
by any infected individual in the same physical node. Effectively,
the infection is transmitted regardless of where individuals were
one step before and, therefore, describes full mixing at the
physical node level. Let us define the total number of individuals
in physical node i, Pi, and the total number of infected individuals
in node i, Ii. We estimated the number of individuals in each city
from the number of tickets in our data set that end in the cities
and considered a total population of 300 million, which is a rough
estimate of the total population of the United States. Assuming
that the transmission rate is b/Pi, where b is a parameter that
accounts for the virulence of the disease, the probability of each
susceptible individual becoming infected is 1&ð1& b

Pi
ÞIi . The

transmission rate is the virulence factor divided by the total
population of node i, because we assume that each individual can
get in touch with a fixed number of other individuals56.

After the reaction step, we carry out the diffusion of people in
the city network with or without memory of their previous step.
Each individual can move to neighbouring cities with probability
s if she is ready to start a new trip in a self-memory node,
indicating that she was in the same physical node in the previous
step, and with probability 1/t if she is travelling and not in a self-
memory node, indicating that she was not in the same physical
node in the previous step. We use two different probabilities
because the fraction of people who start a new trip from a self-
memory node (from home) is much smaller than those who
continue the trip after it started. We consider s¼ 10& 3 per day,
which is of the order of magnitude of the number of new
itineraries per day divided by the total population (we estimate
sC2' 10& 3 itineraries per person per day, from our data). The
length of stay t can be extremely short if a city is visited just to
take a connecting flight. Although the length of stay is
heterogeneously distributed53, we simply considered an average
length of stay of 2 days. That is, once a trip started, each
individual has a 50% chance of spending another day in the city
she is visiting or of moving to the next city. From most memory
nodes, it is possible to reach a self-memory node and end the trip,
such that the probability of leaving again is s.

After starting a trip, movements can be carried out with a first-
or second-order Markov process. Starting from Anchorage and
Los Angeles, Fig. 5a shows the difference in the evolution of the
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spreading process. We used m& 1¼ 3 days, and two different
values for the basic reproduction number R0¼ bm& 1¼ 1.3 and 2,
which is the average number of new infections caused by each
infected individual before recovering. The total fraction of
infected people at the end of the epidemic is barely affected
(the difference is smaller than 10& 4) and there is only a small
delay in the spreading process. To estimate this delay, we
measured the peak time, that is, the day in which the number of
infected individuals is the highest. We averaged the peak times
across different runs, with the 100 infected individuals in a
particular city selected proportional to its population. For
R0¼ 1.3, we estimated the peak time with first-order memory
dynamics to 160±8 and with second-order memory dynamics to
166±9. For R0¼ 2, we estimated the peak time first-order
memory dynamics to 62±3 and with second-order memory
dynamics to 64±3. In both cases, the difference is C3%.

To better understand these results, we repeated the analysis
after first removing all but short returning itineraries, such as
New York–Chicago–New York. In this way, we can compare with
the work on commuting traffic that has reported a slow down in
the spreading process27–29,53. For these dynamics, although we
still do not observe an effect on the attack rate, Fig. 5b shows that
we observe a significant effect on the peak time by modelling
commuting traffic with a second-order Markov process. With
only commuting traffic, a second-order Markov model captures
that travellers spend only limited amount in other cities, thereby
reducing the effective connectivity and the number of disease
introductions in cities. In the actual data, however, the number of
one-way tickets and connecting flights is sufficiently large to
reduce the return rate and increase the time spent in other cities
to a level at which the effect on spreading vanishes between first-
and second-order dynamics55. Again, once random transmission
occurs in a city, all memory effects are washed out in this meta-
population model. Therefore, the effect of a higher-order Markov
process is primarily influential in the beginning of the outbreak
during the introduction phase when the sequence of contacts
matters22,23,52. Overall, we conclude that the first- and second-
order dynamics must be sufficiently different to show a clear
difference on the spreading. To quantify precisely how different is
an interesting question for further investigation.

Secondly we consider modelling spreading with SI dynamics
without meta-populations for the emails data set. In the email
data set, each physical node represents an individual with a
memory node for each other individual from which an email was
received. The target of a memory node’s out-link represents the
individual to which the email was forwarded to and the weight
represents the total number of such emails that has been
forwarded. We model emails as ‘hosts’ for rumours and each
individual j can become infected (informed) if she receives an
‘infective’ email from an individual i. When this happens,
memory node ij

!
associated with the source becomes infected and

the individual is now informed. The infective email can be
forwarded to another person k, according to the probability
distribution pð ij

!! jk
!Þ. In this way, we model the spread of

rumours as a simple contagion process without ‘stiflers’ who no
longer spread rumours34. Therefore, we focus on the early stages
of a spreading process. To study the robustness of the effects of
this second-order Markov process, we also allow information to
be spread independently of the source at different level of mixing
between the first- and second-order Markov model. See Methods
for details about the model.

For this model, we measured the speed of the spreading process.
Figure 5c shows the average fraction of individuals that has heard
about the rumour as a function of time, starting from a single
infected memory node at time t¼ 0. The initial nodes were
randomly selected among those belonging to the largest strongly

connected component. We scaled the time by multiplying by the
rumour-spreading rate to make results independent of this
parameter. Overall, the spreading is much slower when emails
are modelled by a Markov model of second order, as this model
can capture that most emails are forwarded within strongly
confined modules of individuals, which also prevent them from
reaching highly connected and efficient spreaders. Moreover, the
main difference compared with the meta-population model is
that an individual informed about a rumour can participate in
multiple email conversations simultaneously without an interest
in informing everybody about the rumour. That is, where
information spreads often depends on from where it is coming.

Discussion
We have shown that a second-order Markov model is required to
capture essential dynamical processes in a variety of integrated
systems, with important consequences for community detection,
ranking and information spreading. Recent work has indicated
that a first-order Markov model may fail to adequately predict
real dynamics15,20,23,26. That is, real dynamics often have at least
one-step memory, which conventional network analysis cannot
capture. To bridge this gap, we generalized three commonly used
methods of community detection, ranking and spreading, to
operate on a second-order Markov model of flow. We used
several real-world and synthetic examples to show that these
methods reveal system organizations that better correspond to
actual structures, including increased return flow that confines
flow in smaller and more overlapping modules. Previously,
researchers have tried to reveal such structures with heuristic
algorithms, but our approach uses more data rather than extra
assumptions, and benchmark and bootstrap analyses show that
these results are real and based on sufficient data. Consequently,
we have demonstrated that using a second-order Markov model
is often essential for fundamental methods in network science.

The combination of our examples indicates that memory is
critical for analysing network flows in general, and we expect
researchers throughout the sciences to find the methods useful for
analysing increasingly available pathway data. Therefore, we have
made data and code available online at http://www.icelab.org.
umu.se/memorynetworks and integrated the community-detec-
tion algorithm in the Infomap sofware package available at http://
www.mapequation.org. Our methods can be directly generalized
to higher-order Markov models as well. Even if our statistical
analysis of higher-order Markov models suggests that we have
captured most of the salient features in the analysed systems,
other systems where longer pathway data are relevant and
available may have discernible higher-order features. We expect
such features to be less salient, and other means of balancing
model complexity and utility may be more appropriate.

Methods
Assembling pathways into networks with and without memory. Figure 6
illustrates how we generated the networks that describe the dynamics in Fig. 1a,b:
from pathways in a, via weighted links in b and c, to directed weighted networks in
d and e. First, we collect long pathways, in this example, of real itineraries from The
Research and Innovative Technology Administration (Fig. 6a). The data contain
each stop on 19 415 369 itineraries with average pathlength 3.3 between 464 air-
ports in the United States. We used data from the first three quarters of 2011,
which contain a sample of 10% of all itineraries during the time period. In the cities
data set, we aggregated all airports within a radius of 50 km and called destinations
by corresponding city names. Each pathway has a weight equal to the number of
passengers who have purchased exactly that itinerary. To generate weighted
directed links for the standard network, we counted bigrams (city pairs) in the
itineraries (Fig. 6b). To generate weighted directed links for the memory network,
we counted trigrams (city triplets) in the itineraries (Fig. 6c). In the airport data set,
we focused on transfer traffic and disregarded one-way trips with a single flight
(21% of all itineraries). In the cities data set, however, we focused on real passenger
traffic for accurate modelling of disease spread and included also short pathways.
Therefore, in the cities data set the typical memory averaged over all travellers is
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somewhat less than second order. Next, we assembled the links into networks.
All links with the same start node in the bigrams represent out-links of the start
node in the standard network (Fig. 6d). A physical node in the memory network,
which corresponds to a regular node in a standard network, has one memory node
for each in-link (Fig. 6e). A memory node represents a pair of nodes in the
trigrams. For example, the blue memory node in Fig. 6e represents passengers who
come to Chicago from New York. All links with the same start memory node in the
trigrams represent out-links of the start memory node in the memory network. In
this way, the memory network can maintain dependency between where passen-
gers come from and where they go next. Figure 1a,b show the dramatic effect of
maintaining second-order memory: passenger travel is much more constrained
than what the standard network can capture. See Supplementary Note 1 for details
of how we obtained pathways for all analysed networks and represented them as
networks with and without memory.

Significance analysis with resampling. We performed two different statistical
tests to validate our results, bootstrap resampling of all summary statistics in
Table 1 and surrogate data testing of the Markov order in Fig. 2 and Supplementary
Fig. 3. Bootstraping allows us to assign confidence intervals to the summary sta-
tistics based on resampling of the observed data set. Accordingly, only trigrams
observed in the data will occur, but possibly with different frequencies. Contrarily,
surrogate data testing allows us to also generate unobserved trigrams and is
therefore suitable for hypothesis testing of the Markov order against a null model.
In turn, we describe the two methods below.

For the bootstrapping, we generated 100 bootstrap replicas for each data set by
resampling the weights of the pathways from a multinomial distribution (for
patients, taxis and emails, we only had access to trigrams and resampled their
weights directly). This scheme corresponds to resampling of all pathways with
replacement. That is, we assume that pathways are generated independently. For
the air traffic depicted in Fig. 6a, for example, we assume that tickets are bought
independently. This assumption of independence is, of course, only approximately
true, but as flight tickets rarely are bought for more than a few passengers at the
same time, the approximation will work well in practice. After resampling the

pathways, we generated the networks as described in Fig. 6b–e and performed any
analysis as on the raw network. For each set of summary statistics, we calculated
the bootstrap confidence interval by ordering the 100 bootstrap estimates and
eliminated the ten smallest and ten largest estimates. In general, we report the
lower and upper limits of this interval.

For the surrogate data testing, our null hypothesis was that the flow is first-
order Markov, and we used the conditional entropy at each node as a test statistic.
Assuming that the null hypothesis is true, we estimated the probability that the
conditional entropy in a second-order Markov process is at least as low as the
observed value. We estimated this probability, the P-value, with surrogate
resampling and rejected the null hypothesis if the P-value was lower than 0.10. For
each node and for each resampling, we removed the second-order Markov effect by
performing random pairings between all nodes visited before and after the node
given by all trigrams centred at the node. With this resampling scheme, we can
single out nodes with a significant second-order Markov effect. See Supplementary
Note 2, for further details and for surrogate testing of higher Markov orders.

Community detection with second-order Markov dynamics. We have chosen to
work with the flow-based map equation framework30. In principle, we could have
used alternative flow-based methods31, but the map equation framework allows us
to compare the community structure with first- and second-order Markov
dynamics by only modifying the dynamics and not the mechanics of the method.
As we are interested in overlapping modules, we build our new method on a
generalization of the map equation to overlapping modules39.

The map equation framework is an information-theoretic approach that takes
advantage of the duality between compressing data and finding regularities in the
data. Given module assignments of all nodes in the network, the map equation
measures the description length of a random walker that moves from node to node
by following the links between the nodes. Therefore, finding the optimal partition
or cover of the network corresponds to testing different node assignments and
picking the one that minimizes the description length30.

The map equation framework easily generalizes to higher-order Markov
dynamics, because memory networks only change the dynamics of the random
walker as described above. Therefore, instead of applying the search algorithm on
the standard network, we apply it on the memory network and assign memory
nodes to modules, with one important difference: as we are interested in
movements with or without memory between physical nodes, the description of the
random walker must reflect this process. Therefore, when two or more memory
nodes of the same physical node are assigned to the same module, the description
length must capture the fact that the memory nodes share the same codeword.
We achieve this description by summing the visit frequencies of all memory nodes
of each physical node in a module and then use this visit frequency to derive the
optimal codeword length. We ensure that the community detection results only
depend on memory effects by representing first-order Markov dynamics in a
memory network, with each memory node having the out-links of its
corresponding physical node in the standard network. In this way, the compression
algorithm remains the same and only the dynamics change.

Figure 7 illustrates the effect of second-order Markov dynamics on community
detection. The pathways represent air travel between San Francisco, Las Vegas and
New York, and correspond to a subset of the itineraries in the city data. With first-
order Markov dynamics, there are no regularities to take advantage of in a modular
description, and clustering all the cities together gives a shorter description length.
With second-order Markov dynamics, however, the strong out-and-back travel
pattern to and from Las Vegas makes it more efficient to describe the dynamics as
two overlapping modules, with Las Vegas assigned to both modules. That is, the
first-order dynamics obscure the actual travel pattern and prevent a modular
description from compressing the data. See Supplementary Note 3, for further
details.

To validate our method, we have performed benchmark tests on synthetic
pathways. We first describe how we build artificial pathways such that flow tends to
stay inside predefined communities when described by a second-order Markov
model. Next, we show that Infomap for memory networks, the community-
detection algorithm we have developed, can recover the planted structure.
However, when the artificial pathways are described by a first-order Markov model
in a standard network, much of the structure is washed out. We show that neither
Infomap nor other commonly used methods for overlapping communities can
accurately recover the planted structure.

We used the following algorithm to generate trigrams within and between
communities.

As planted structure, we consider 128 nodes and the community size fixed to 32
nodes, similar to that in the Girvan–Newman benchmark57. Moreover, we tune the
number of communities M. If M¼ 4, each node is assigned to a single community.
If M44, multiple memberships are assigned to nodes in random order, with the
constraint that no node can be assigned to the same community twice.

As synthetic pathways, we draw Ein internal trigrams and Eout external trigrams.
Internal trigrams are paths of three nodes i,j,k such that if nodes i and j belong to
community C, node k also belongs to C. For external trigrams, at least two of the
three nodes are not assigned to the same community. Below we describe a simple
sampling algorithm. In these tests, we set Ein¼ 50,000 and Eout¼ 5,000 and 20,000,
respectively. The number of trigrams is relatively high compared with the network
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size, because to highlight the effect of memory the number of trigrams must be of
the same order of magnitude as the number of memory nodes
(128' 127C15,000).

Internal trigrams confine flow inside communities. Therefore, if the flow goes
from node i to j in community C, the next node k must also belong to community
C. This constraint requires that memory nodes ij

!
and jk
!

are uniquely assigned to
community C, although physical nodes i, j and k can have multiple memberships.
We assign memberships to memory nodes and draw internal trigrams in the
following way:

( We uniformly select a community C.
( We uniformly sample nodes i, j and k assigned to community C. As nodes can be

drawn from multiple clusters, we check that neither memory node ij
!

nor
memory node jk

!
has been assigned to a community different from C yet. If at

least one has been assigned to a different cluster, we sample new nodes. If not,
we assign the memory nodes to C and record the trigram i,j,k.

External trigrams guide flow between communities. Therefore, we draw random
trigrams i,j,k until at least two of the three nodes have no memberships in
common.

To measure how well Infomap for memory networks recovers the planted
structure, we applied the Normalized Mutual Information (NMI) described in ref.
58 to the community assignments of the memory nodes (we used max function for
the normalization instead of the average). Some memory nodes were only sampled
in external trigrams and not assigned a membership by the algorithm above. As
these nodes are not present in the planted structure, we also discard them in the
output of Infomap. Figure 8 show the performance of Infomap for memory
networks with first- and second-order Markov dynamics, as well as the
performance of standard (undirected) Infomap30 with all memory nodes treated as
physical nodes. Infomap for memory networks recovers the planted partitions
almost perfectly up to at least 8 community assignments per node with 5,000
external trigrams and up to 6 community assignments per node with 20,000
external trigrams. However, with first-order dynamics, Infomap for memory
networks is only able to recover the correct partition when no overlap is present.
Quite the opposite, standard Infomap tends to find many more modules because
the algorithm considers each memory node to be ‘independent,’ and there is no
intrinsic compression gain from clustering memory nodes of the same physical
node together.

To demonstrate that second-order Markov information is necessary, we
aggregated the trigrams into standard undirected networks and applied several
commonly used algorithms for overlapping communities. As the nodes can be
assigned to multiple communities, we used the definition of NMI proposed in
ref. 59 for all methods except for the link-clustering method. This algorithm
returns a partition of non-overlapping links, which we treated as memory nodes
and computed the NMI as described for Infomap above. As the link clustering
method only accepts unweighted graphs as input, we used a threshold of 12 for link
weights and 0.7 for selecting a partition from the dendrogram, and found that
results are not sensitive to these choices. Further, the clique percolation method
was unusably slow with all links included and we had to remove links with weights
below a certain threshold. We used a threshold of 3 for 5,000 external trigrams and
8 for 20,000 external trigrams. We also had to provide the clique size (C30).

Table 2 shows the results. The clique percolation method was the only
algorithm that was able to recover the correct partition with external trigrams and
multiple community assignments. However, regardless of the thresholds we tried,
for more than two community assignments per node we were not able to obtain
any result after several days of running time. The reason why the algorithm is
successful on this benchmark test, at least in theory, is that the number of trigrams
is so high that the planted communities are cliques of 32 nodes. Of all tested
algorithms, the link clustering method was the only one that obtained non-trivial
solutions for three or more community assignments per node. In the next section,
we illustrate how clique percolation and link clustering can identify overlapping
communities of second-order dynamics aggregated in standard networks.

Ergodic second-order Markov dynamics. The solution of equation (10) is not
well-defined when the process is not ergodic, which happens when the memory
network is not strongly connected, or when it contains closed cycles60. To
circumvent this limitation and to ensure the ergodicity of the stochastic process, we
perform two modifications. First, if a memory node is a dangling node and has no
out-links, we use M1 data and assign all out-links from the physical node to the
dangling node. In this way, link weights and M1 data become our fallbacks when
there is not enough M2 data for an ergodic process on the memory network.
Second, it is standard to allow walkers to randomly teleport across the system, as
we mentioned before. Walkers either follow links with probability a or teleport
with probability 1& a (ref. 6). Therefore, the PageRank of a memory node is given
by

P jk
!

; tþ 1
" #

¼ a
X

i

P ij
!

; t
" #

pð ij
!! jk

!Þþ ð1& aÞ
P

j W j! kð Þ
P

lm W l! mð Þ
: ð12Þ

It is important to note that walkers do not teleport uniformly to memory nodes,
but at a rate proportional to the weight W of the corresponding link. Equivalently,
walkers thus teleport to physical nodes at a rate proportional to their in-strength.
This choice is motivated by recent research showing that so-called link tele-
portation improves robustness of ranking with respect to standard teleportation61.
A random walk with teleportation is ergodic for any ao1, whatever the topology
of the underlying network, and its stationary solution can be found by using
standard iteration methods.

The link-teleportation scheme works well for ranking nodes, but further
improvements can be made for the map equation, which also explicitly operates on
the flow between nodes. For community-detection results that are more robust to
the particular choice of teleportation parameter, we do not use teleportation steps
between nodes and only steps along links to derive the optimal codeword lengths.
We achieve the same PageRank of memory nodes in equation (12) by first
calculating the stationary distribution with recorded teleportation to physical nodes
at a rate proportional to their out-strength, followed by a subsequent recorded step
without teleportation. By only encoding the last step in this smart teleportation
scheme61, the community detection results are based on the same ergodic node
visit rates as in equation (12), but without the noise on links caused by random
teleportation.

SI dynamics on networks with memory. Here we describe how we model
spreading with SI dynamics without meta-populations for the emails data set. We
assume that each memory node ij

!
forwards fs

ij
! emails per time step, where f is

a proportionality constant and s
ij
! is the out-strength of the memory node, that is,

the sum of the weights of the links ij
!! jk

!
. A forwarded email from memory
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Figure 8 | Performance tests on benchmark networks. Performance of
Infomap. The blue and red curves refer to M1 and M2 structural
information, respectively, whereas the yellow curve was obtained by
running standard (undirected) Infomap on a network in which each
memory node is treated as a physical node. Lines show median values and
shaded areas cover 25 and 75 percentiles.

First-order Markov Second-order Markov

L=1.49 bitsL=1.49 bits
San Francisco

Las Vegas

New York

L=1.07 bitsL=2.12 bits

Figure 7 | Second-order memory dynamics reveal overlapping
modules. Pathway data between San Francisco, Las Vegas and New York,
represented with memory nodes capturing first-order (a,b) and second-
order (c,d) memory dynamics. With first-order memory, the characteristic
out-and-back travel of Las Vegas is lost and the dynamics are best
described as movements in one module; describing the dynamics with two
overlapping modules requires 0.63 more bits. With second-order memory,
the out-and-back travel is evident and the dynamics are best described as
movements in two overlapping modules, as movements between the
modules are very rare. See Supplementary Fig. 4 for a detailed derivation of
the description lengths.
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node ij
!

goes to a memory node, say jk
!

, with probability pð ij
!! jk

!Þ. If ij
!

is

informed about a rumour and jk
!

is not, we assume that an email from

ij
!

to jk
!

informs jk
!

with probability b, the so-called rumour spreading rate. Let

tð ij
!! jk

!Þ denote the overall probability that an infected memory node ij
!

transmits the rumour to an uninformed memory node jk
!

. As the probability that
the infection is not transmitted is the probability that each email leaving ij

!
either is

forwarded to a memory node other than jk
!

or is forwarded to jk
!

but ignored, we
have:

1& tð ij
!! jk

!
Þ ¼ ð1& bpð ij

!! jk
!
ÞÞ

fs
ij
! ’ e

& bfW ij
!
! jk
!" #

; ð13Þ

where we assume that b is small and W ij
!! jk

!" #
¼ s

ij
!p ij

!! jk
!" #

is simply

the weight of link ij
!! jk

!
in the memory network. In this limit, the only relevant

parameter is thus bf. Without loss of generality, we can set f¼ 1, in which case
the dynamics of the spreading process are driven by

tð ij
!! jk

!Þ ¼ 1& e
& bW ij

!
! jk
!" #

: ð14Þ
This equation shows that this spreading process with second-order Markov

dynamics corresponds to traditional spreading models but performed on memory
nodes. That is, the only differences are that emails are forwarded to the next
destination depending on where they come from. As rumours not necessarily need
to spread between individuals that participate in the same email conversations, we
allow each informed individual to send emails according to a first-order Markov
model with probability Z at each time step. Therefore, to study the effects of
memory on this spreading process, we can simply tune Z. For example, the extreme
case Z¼ 100% corresponds to a first-order Markov model.
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37. Sinatra, R., Gómez-Gardeñes, J., Lambiotte, R., Nicosia, V. & Latora, V.

Maximal-entropy random walks in complex networks with limited
information. Phys. Rev. E 83, 030103 (2011).

38. Van der Heyden, M., Diks, C., Hoekstra, B. & DeGoede, J. Testing the order of
discrete Markov chains using surrogate data. Phys. D 117, 299–313 (1998).

39. Esquivel, A. & Rosvall, M. Compression of flow can reveal overlapping-module
organization in networks. Phys. Rev. X 1, 021025 (2011).

40. Scholtes, I. et al. Slow-down vs. speed-up of information diffusion in non-
markovian temporal networks. Preprint at http://arXiv.org/abs/1307.4030 (2013).

41. Lambiotte, R., Salnikov, V. & Rosvall, M. Effect of memory on the dynamics of
random walks on networks. Preprint at http://arXiv.org/abs/1401.0447 (2014).

42. Newman, M. Modularity and community structure in networks. Proc. Natl
Acad. Sci. USA 103, 8577–8582 (2006).

43. Lancichinetti, A., Radicchi, F., Ramasco, J. & Fortunato, S. Finding statistically
significant communities in networks. PLoS ONE 6, e18961 (2011).

44. Ahn, Y., Bagrow, J. & Lehmann, S. Link communities reveal multiscale
complexity in networks. Nature 466, 761–764 (2010).

Table 2 | Performance test for overlapping communities on aggregated benchmark networks.

External trigrams 0 5,000 20,000

Module assignment 1 2 3 1 2 3 1 2 3

Clique perc.47 1.0 1.0 1.0 1.0 1.0 ? 1.0 1.0 ?
COPRA62 1.0 0.03 — 1.0 — — 1.0 — —
Link clust.44 1.0 0.42 0.32 1.0 0.43 0.30 1.0 0.42 0.25
MOSES63 1.0 1.0 — — — — — — —
OSLOM43 1.0 0.97 0.8 1.0 0.80 — 1.0 0.90 —

Score measured as the average Normalized Mutual Information. A dash indicates that the algorithm returned a single module or 128 modules with single nodes. A question mark indicates that the
algorithm did not finish.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5630

12 NATURE COMMUNICATIONS | 5:4630 | DOI: 10.1038/ncomms5630 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


45. Evans, T. & Lambiotte, R. Line graphs, link partitions, and overlapping
communities. Phys. Rev. E 80, 016105 (2009).

46. Yang, J. & Leskovec, J. in Proc. ACM SIGKDD Workshop on Mining Data
Semantics 3 (ACM, 2012).
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Supplementary Figure 1 Representing pathways with a standard network and a mem-

ory network. (a) The three pathways between four physical nodes in Supplementary Equa-
tion (1). (b) Standard network representation. (c) Memory network with memory nodes in
black and self-memory nodes in brown. (d) Memory network representation. Dashed links
in d from the self-memory nodes represent the first step of each pathway in a. We only
use self-memory nodes in the cities dataset (see Supplementary Note 1). For the other
networks, we only include the first step of each pathway in the weights of the teleportation
scheme as described in the Methods section of the main text.
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Supplementary Figure 2 Taxi tra�c in the San Francisco urban centre.

We used the superimposed hexagonal grid to infer trigrams.
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Supplementary Figure 3 Predicting the next destination in air tra�c.

The entropy measures the uncertainty about a passengers next destination
conditional on the sequence of already visited airports. The Markov order
sets the maximum length of this memory. (a) Here we only consider pas-
sengers that have already visited at least n airports. (b) Here we consider
all passengers and all their airport visits. Resampled variance is less than
the size of the symbols.
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Supplementary Figure 4 Second-order Markov dynamics reveal overlapping modules. Itineraries weighted by passenger number from the data pre-
sented in Supplementary Note 1, restricted to transfer tra�c and trigrams that include San Francisco, Las Vegas, and New York. (a) Legend with
labelled links between memory nodes. For example, wNLN represents pathways that start in New York, continue to Las Vegas, and return to New York.
(b) First-order Markov dynamics represented with links between memory nodes. (c) Second-order Markov dynamics represented with links between
memory nodes. (d) The map equation for the one-module solution M1 in e-f. Normalization of the weights in the entropy is implicit. (e) The descrip-
tion length of the one-module solution M1 with memoryless flow. (f) The description length the a one-module solution M1 with second-order Markov
dynamics. (g) The map equation for the overlapping two-module solution M2 in h-i. First line gives the average description length of movements be-
tween the two modules. Second line gives the average description length of movements within the green module. Third line gives the average descrip-
tion length of movements within the blue module. (h) The description length of the overlapping two-module solution M2 with first-order Markov dy-
namics. (i) The description length of the overlapping two-module solution M2 with second-order Markov dynamics.
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Supplementary Figure 5 Interpreting link clustering and clique percolation as flow-

based methods with second-order Markov dynamics. (a) Link clustering interpreted as
a flow-based method with second-order Markov dynamics: The similarity between link
m ! l and other links connected to node l represented as similarity weighted out-links
from memory node

#”
ml to connected memory nodes. (b) Clique percolation interpreted as

a flow-based method with second-order Markov dynamics: Possible link sides of adjacent
triangles sharing the link m ! l represented as unweighted out-links from memory node

#”
ml.
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Supplementary Figure 6 Illustration of the memory model. After per-
forming a jump along the dashed link, a walker can either perform a return
step, with probability r2, a triangular step, with probability r3, or an ex-
ploratory step, with probability r3<.

Supplementary Figure 7 Fitting the memory model. The plots show the KL divergence reduction in
the memory model with all parameters r2, r3, r3< (red), and with restricted parameters r̂2, ˆr3< (blue)
model. The vertical lines correspond to r2 (red), r3 (green) and r̂2 (blue).
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Supplementary Figure 8 Schematic networks without triangles and with

reciprocated links. In a, there is no triangle and r3 does not play a role.
In b, all links are reciprocated and r2 does not play a role. The stationary
probability p increases/decreases with r2 (a) or r3 (b) for red and blue links
respectively. For solid lines, this increase/decrease is predicted by the first-
order perturbation in Supplementary Equation (17). For dashed lines, the
probability of finding a walker on a memory node is uniform in the first-
order approximation, and higher-order contributions are required to predict
increase or decrease.

Supplementary Figure 9 Linear approximation of memory e↵ect on

ranking. PageRank as a function of a for edges going from 1 to 2 and
from 2 to 1, illustrated in Supplementary Fig. 8a, for r2 = 0.8, r3 = 0.1 and
r3< = 0.1. Solid lines correspond to the linear approximation given by Sup-
plementary Equation (18) and Supplementary Equation (19).
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Supplementary Tables

Supplementary Table 1 Second-order Markov e↵ects on constraints on flow

Network Two-step return (%) Three-step return (%) Entropy rate (bits)
M1 M2 M1 M2 M1 M2

Airports 5.7 (5.7–5.7) 47 (47–47) 2.1 (2.1–2.1) 0.63 (0.63–0.64) 5.2 (5.2–5.2) 3.4 (3.4–3.4)
Cities 6.5 (6.5–6.5) 48 (48–48) 2.8 (2.8–2.8) 0.62 (0.62–0.62) 4.7 (4.6–4.7) 3.5 (3.5–3.5)

Journals 11 (11–11) 21 (21–21) 4.7 (4.7–4.7) 5.4 (5.4–5.5) 4.5 (4.5–4.5) 3.5 (3.5–3.5)
Patients 16 (16–18) 54 (51–55) 1.9 (1.7–2.1) 3.4 (2.0–3.2) 3.0 (2.5–2.6) 1.0 (0.92–1.0)

Taxis 20 (20–20) 10 (10–11) 6.8 (6.8–6.9) 10 (10–10) 2.2 (2.2–2.2) 1.1 (1.1–1.1)
Emails 14 (14–15) 58 (55–58) 5.2 (5.1–5.5) 2.7 (2.2–3.2) 3.0 (2.8–2.9) 1.3 (1.1–1.2)

M1 and M2 for results obtained with a first- and a second-order Markov model, respectively. Values in parentheses represent
the 10th and 90th percentiles from the bootstrap analysis. All node averages are for physical nodes.

Supplementary Table 2 Second-order Markov e↵ects on community detection and ranking

Network Module size (%) Module assignments Compression gain (%) Ranking difference (%)
M1 M2 M1 M2 M1!M2 M1!M2

Airports 93 (93–93) 5.1 (5.0–5.1) 1.2 (1.2–1.2) 6.2 (6.2–6.3) 13 (9.7–9.8) 8.2 (8.1–8.2)
Cities 32 (32–32) 5.3 (5.4–7.7) 1.8 (1.8–1.8) 3.7 (3.6–3.7) 4.7 (4.3–4.3) 3.7 (3.7–3.7)

Journals 14 (14–14) 15 (15–15) 1.8 (1.8–1.8) 3.4 (3.3–3.4) 4.7 (10–11) 9.7 (9.5–9.8)
Patients 7.3 (5.2–6.9) 1.9 (1.7–2.1) 5.0 (4.4–4.7) 4.7 (4.4–5.0) 30 (23–28) 22 (24–28)

Taxis 3.1 (2.9–3.3) 2.2 (2.2–2.4) 1.5 (1.5–1.6) 1.7 (1.7–1.8) 6.5 (6.5–7.2) 6.5 (6.5–7.1)
Emails 12 (11–13) 5.8 (4.7–6.3) 1.3 (1.4–1.6) 3.0 (2.5–2.7) 26 (23–27) 18 (20–24)

M1 and M2 for results obtained with first- and second-order Markov models, respectively. Values in parentheses represent the 10th and 90th
percentiles from the bootstrap analysis. All node averages are for physical nodes.

Supplementary Table 3 Memory reveals multidisciplinary journals in the scholarly literature

Field PNAS Science Ecology Plant Cell
M1 M2 M1 M2 M1 M2 M1 M2

Ecology � 13 � 29 100 100 � �
Cell biology 100 80 100 68 � � 100 100
Mathematics � 4.6 � � � � � �

Statistics � 1.5 � � � � � �
Anthropology � � � 1.6 � � � �

Others � 0.38⇤ � 1.4† � � � �
The relative assignment to each field in percentage. Number of other fields a
journal is assigned to in parenthesis. ⇤In 1 other field. †In 7 other fields.
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Supplementary Table 4 Fitted model parameters and relative reduction in KL divergence over a first-order Markov model

Network r2(%) r3(%) r3<(%) KL red. (%) r̂2(%) K̂L red. (%)

Airports 93 (93-93) 2.8 (2.8-2.8) 4.5 (4.5-4.5) 66 (66-66) 97 (97-97) 65 (65-65)
Cities 91 (91-91) 3.2 (3.2-3.2) 5.6 (5.6-5.7) 67 (67-67) 96 (96-96) 66 (66-66)

Journals 67 (67-67) 25 (25-25) 7.6 (7.2-7.6) 9.6 (9.4-9.6) 72 (72-72) 7.0 (6.9-7.0)
Patients 86 (85-90) 10 (7.4-11) 3.4 (2.8-3.5) 40 (40-45) 95 (95-95) 40 (40-45)

Taxis 17 (16-17) 66 (65-66) 17 (17-18) 23 (22-23) 29 (29-30) 4.8 (4.8-5.0)
Emails 89 (88-89) 8.9 (8.4-9.8) 1.9 (1.8-2.2) 54 (51-55) 94 (94-95) 50 (47-51)

Values in parentheses are the 10th and 90th bootstrap percentiles. K̂L refers to the simplified model, where we only
account for returning steps.
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Supplementary Note 1

Data acquisition and processing

Here we describe how we estimate the transition probabilities
from empirical data. We use empirical data that consist of large
sets of multi-step pathways of varying length. To create memory
networks that capture an nth-order Markov process, we count all
pathways of length n+1 in the empirical pathways of length n+1
or longer. Take, as an example, the three pathways

i ! j ! k ! l, l ! k ! j ! i, and j ! k ! j. (1)

In a standard network with physical nodes i, j, k, and l, we ex-
tract the four directed links i ! j, j ! i, k ! l, and l ! k with
weight 1 and the two directed links j ! k and k ! j with weight
2, as shown in Supplementary Fig. 1a. These links are all path-
ways of length 1 that can be extracted from the three pathways in
Supplementary Equation (1). The weight W (i ! j) of a link cor-
responds to the number of times the link occurs in the pathways.
With W (i ! j) = 0 if there is no link from i to j, the transition
probabilities take the form

p(i ! j) =
W (i ! j)

Âk W (i ! k)
. (2)

Instead, in a memory network with memory nodes #”i j ,
#”
jk,

#”
kl,

#”
lk,

#”
k j, and #”ji, we extract the five directed links #”i j ! #”

jk,
#”
jk ! #”

kl,
#”
lk ! #”

k j,
#”
k j ! #”ji, and

#”
jk ! #”

k j, all of weight 1 in this case, as
shown in Supplementary Fig. 1d. These links are all pathways of
length 2 that can be extracted from the three pathways in Supple-
mentary Equation (1). With W (

#”i j ! #”
jk) to denote the weight of

a link #”i j ! #”
jk and W (

#”i j ! #”
jk) = 0 if there is no link from #”i j to

#”
jk, the transition probabilities take the form

p( #”i j ! #”
jk) =

W (
#”i j ! #”

jk)

Âl W (
#”i j ! #”

jl)
. (3)

This formalism can be extended to memory networks that cap-
ture even higher-order Markov processes, but here we focus on
describing memory networks that capture second-order Markov
processes. In this case, links between physical nodes in the stan-
dard network representation take the role of memory nodes in the
memory network representation. Therefore, a memory network
is a form of line graph, but we use the term memory network to
highlight our purpose with this representation: to capture move-
ments between physical nodes with transition rates that depend on
the past. In network science, line graphs have recently been in-
troduced for a different purpose, namely, to move the focus from
nodes to links as a computational trick to detect overlapping mod-
ules in networks1,2. Supplementary Figure 1 shows that the mem-
ory network contains more information than a line graph derived
from the standard network would. Memory node #”i j , for example,
corresponds to the link i ! j in the standard network representa-
tion. However, this link is not connected with both link j ! k and
link j ! i, as the standard network suggests, but only with link
j ! k, as the memory network shows.

With very long empirical pathways that generate ergodic pro-
cesses on the memory networks, we could directly use (7) in the
main manuscript without any extra work. In practice, however,
most pathways are between three and six steps long and bound-
ary effects can influence the analysis. Also, as with directed stan-
dard networks, a Markov process on a memory network is rarely

ergodic without introducing a small teleportation probability as
described in the Methods section of the main manuscript.

Since we are interested in second-order Markov dynamics, it
is convenient to store all pathway data as trigrams. From the
pathways in Supplementary Equation (1), we store the trigrams
in the following way:
i i j 1
i j k 1
j k l 1
l l k 1
l k j 1
k j i 1
j j k 1
j k j 1

The last number in each line gives the frequency of the corre-
sponding trigram. It is straightforward to calculate the transition
probability (6) in the main manuscript between memory nodes
from the list of trigrams. For instance, p( #”i j ! #”

jk) = 1,
p(

#”
jk ! #”

kl) = 1/2, etc.
To be able to initiate dynamics in physical nodes, we repeat the

first physical node of pathways twice. We call the correspond-
ing memory nodes self-memory nodes. They represent flow in a
physical node that was in the same physical node in the previous
step. For example, the first trigram of the pathway i ! j ! k ! l
is i i j 1 with added self-memory node #”ii (the three trigrams
with self-memory nodes above correspond to the dashed links in
Supplementary Fig. 1d). In this way, the second pair of nodes
in each line forms the link between physical nodes in a standard
network representation and it becomes straightforward to obtain
M1 data. The procedure is to simply ignore the first node in the
trigrams and, for each link between two physical nodes i and j,
aggregate all weights to W (i ! j). We stress that we use the
self-memory nodes only to obtain link weights and M1 data for
teleportation steps and not for regular steps (the city network is
an exception; see Supplementary Note 1).

When parsing the data, the first line of the trigram data reads
literally: “There is one link between self-memory node #”ii and
memory node #”i j .” The meaning is: “One pathway starts in i and
continues to j,” and we increase the weight of memory node #”i j
by 1. The second line of the trigram data reads literally: “There
is one link between memory node #”i j and memory node

#”
jk.” The

meaning is: “One pathway in j came from i and continues to k,”
and we add a link from memory node #”i j to memory node

#”
jk and

increase the weight of memory node
#”
jk by 1.

Cities and Airports

We compiled the airline pathways from the Airline Origin and
Destination Survey (DB1B) made public by the Research and
Innovative Technology Administration (RITA). The data contain
each stop on 19,415,369 itineraries between 464 airports in the
US with average pathlength 3.3 (21% of length two, 53% of
length three, 5% of length four, 19% of length five, 1.4% of length
six, and 1.0% of length seven or longer). Note that the origin is
included in the path length, such that a path length of three cor-
responds to two flight legs. We used data from the first three
quarters of 2011.

In the city memory network, we aggregated all airports within
a radius of 50 kilometres. Since the airport data have clear starts
and stops — a passenger is based in a city and most often returns
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to the same city at the end of the itinerary — we also include the
home city itself in the analysis. In this way, we can better capture
real passenger traffic and extend the analysis beyond transfer
traffic. We thus represent the home city with the corresponding
self-memory node in the memory network and, unlike in the
other memory networks, include the self-memory nodes in the
analysis. For example, we represent a pathway i . . . j . . .k . . . j . . . i
going from city i to city k with transfer in city j and back with
the trigrams
i i j 1
i j k 1
j k j 1
k j i 1
j i i 1

and include the first and last trigrams in the analysis.
In the airport memory network, we focused on transfer traffic

and did not include self-memory nodes. For example, a pathway
i . . . j . . .k . . . j . . . i, representing an itinerary from airport i to
airport k with transfer at airport j and back, is represented by the
trigrams
i i j 1
i j k 1
j k j 1
k j i 1

with the first trigram i i j 1 included only for calculating the
teleportation weight in the PageRank analysis.

Journals

The journal citation data were extracted from JSTOR
(www.jstor.org), a not-for-profit digital library that includes
2,227 journals and 8,227,537 citations among these journals. In
order to capture memory, we extracted the underlying article-
level citations. This included 1,787,351 unique articles that
cite at least one other JSTOR article or received a citation from
another JSTOR article.

JSTOR does not represent the full universe of scholarly con-
tent. For example, the journal Nature is not included in this sub-
set. In addition, physics, engineering, and computer science are
not well represented in this corpus of articles. However, it did
offer several advantages. First, JSTOR made its data available for
research. Second, the JSTOR corpus has both article- and journal-
level data, which were necessary for building memory networks.

For each article A in JSTOR, we searched all articles Aout cited
by A and all articles Ain citing A. If we found at least one cited and
one citing article, then, for each cited article, we picked a random
citing article and formed the trigram

Ain ! A ! Aout, (4)

which we mapped to the trigram between the corresponding jour-
nals

Jin ! J ! Jout. (5)

Finally, we aggregated all journal trigrams into the weighted
memory network. By sampling memory networks many times,
we found that choosing a random citing article did not affect
our ranking or community detection results3 (see Supplementary
Note 2).

Patients

The patient data derive from a database of inpatient care at hos-
pitals in Stockholm, Sweden, during 2001 and 20024. The full
dataset consists of 295,108 individuals who entered at least one
of 702 wards at hospitals or nursing homes in 52 different loca-
tions. Our anonymised data were compiled by Fredrik Liljeros
and are a sample of 365 days from the original data. Since we are
only interested in patients who entered three or more wards, the
data contain records from fewer individuals than the original data
and are limited to patient movements between 402 wards.

Taxis

We included the taxi data because we were interested in analysing
a real-world system lacking strong return flow. With this data, we
can contrast the dynamics in the other networks. The data are
from GPS receivers in smartphones of taxi drivers from the Uber
taxi company in the San Francisco region5. We further processed
the data in the following way. First, because most of the taxi traf-
fic is in the metropolitan area of San Francisco, we limited our
analysis to the rectangle limited by longitudes 122.456 122.388
West and latitudes 37.748 37.808 North. In that rectangle, we
superimposed a hexagonal grid of 20 x 20 hexagons, depicted in
Supplementary Fig. 2. The distance between opposite sides in
each hexagon of the grid is approximately 375 meters, or about
the length of two city blocks. Indeed, we observed some shorter
trips in the dataset, but not many. For each of 25,000 taxi trajec-
tories in the data set, we built chains of 2-d integer coordinates
corresponding to the hexagon where the taxi is driving at a given
moment. That is, geographical hexagons are the nodes of the net-
work, and there is a link between two hexagons if they share an
edge. Finally, we took triplets of consecutive hexagons visited
by a taxi and summarized them in trigrams, as described above.
For calculating the weight of each trigram, we used the number
of times that a taxi trajectory contained the trigram.

To validate that our results are not affected by the particular
choice of grid structure, we also derived memory networks from
10 x 10 and 40 x 40 hexagonal grids. The results were qualita-
tively the same, with small quantitative differences.

Emails

The Enron email dataset6 comprises emails between 146 users
disclosed during the trial following the Enron scandal. We ag-
gregated all email addresses for each single user, and used a total
of 116,525 messages between users as links. In order to estab-
lish succession between messages, we looked to common word-
triplets present in the subject, overlap between the to and from
fields, and message date-time. Because we linked messages using
their common word-triplets, many messages were linked to many
other messages through their subject line headings. We removed
the redundancy by leaving only one incoming link for each mes-
sage, namely, the one with the latest possible time-stamp. Finally,
we broke the pathways into trigrams as described above.

Supplementary Note 2

Significance analysis with resampling

To verify that our results are based on sufficient data, we per-
formed bootstrap resampling of pathways for all summary statis-
tics reported in the main manuscript and below, and surrogate data
testing of the entropy rate to estimate the Markov order.
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Bootstrap resampling

For each dataset, we generated 100 bootstrap replicas by resam-
pling the pathways with replacement and then constructed the net-
works from the replicas. Each dataset contains a large number of
pathways distributed over a smaller number of unique pathways,
such that each unique pathway has a weight given by the num-
ber of that unique pathway in the dataset. Therefore, we gener-
ated a single bootstrap memory network by first resampling the
weights of all unique pathways from a multinomial distribution
and then breaking the long pathways into trigrams (for patients,
taxis, and emails, we only had access to trigrams and directly
resampled their weights). For a given dataset, we used a multino-
mial distribution with as many categories as unique pathways in
the dataset and with probabilities for the categories proportional
to the weights of the unique pathways. From this multinomial
distribution, we performed as many trials as the total number of
pathways in the dataset and aggregated the outcome to resampled
weights for all unique pathways.

For the journal network, we constructed the bootstrap repli-
cas differently, because the journal memory network is not con-
structed from pathways but from chaining article citations. The
procedure described in Supplementary Note 1 above involves a
random step, and we simply generate the bootstrap replicas by re-
peating this procedure. Note that this procedure does not generate
any variation in the standard network, but it is anyway the signif-
icance of the second-order Markov results that we are interested
in.

For each set of summary statistics, we calculated the bootstrap
confidence interval by ordering 100 bootstrap estimates and elim-
inated the ten smallest and ten largest estimates. In this way, the
remaining estimates span the 90% bootstrap percentile confidence
interval. In general, we report the lower and upper limits of this
interval. If there are many trigrams with only a few observations
in the data, a summary statistic of the raw data can lie outside
of the bootstrap confidence interval. Nevertheless, there can still
be a memory effect. For a significant memory effect, what really
matters is non-overlapping confidence intervals for M1 and M2
dynamics.

Surrogate data testing

For the memory effects of individual nodes reported in Fig. 2 of
the main manuscript, we also performed hypothesis testing to ver-
ify that our results are based on sufficient data. Our null hypothe-
sis was that the flow is a first-order Markov process, and we used
the conditional entropy at each node as a test statistic. Assuming
that the null hypothesis is true, we estimated the probability that
the conditional entropy of the second-order Markov process is at
least as low as the observed value. We estimated this probabil-
ity, the p-value, with bootstrap resampling7 and rejected the null
hypothesis if the p-value was lower than 0.10.

To resample the data at each node i, we used the so called
symbolic surrogate procedure with constrained probabilities
surrogates8. We first collected all trigrams x1x2x3 that pass
through node i in the first step (x2 = i). These trigrams form a
set of n pairs

�
(x1

1,x
1
3),(x

2
1,x

2
3), . . . ,(x

n
1,x

n
3)
 
, (6)

with all steps before and after node i. To resample these pairs,
we randomized the order of the set of nodes visited before node i,�

x1
1,x

2
1, . . . ,x

n
1
 

and created random pairings with the set of nodes

visited after i,
�

x1
3,x

2
3, . . . ,x

n
3
 

, thereby destroying any memory
effect. After aggregating the transition probabilities for the ran-
dom pairings, we calculated the conditional entropy for the ran-
domized data. We repeated this procedure, random resampling
and calculation of conditional entropy, as many times as needed
to conclude that the p-value is lower or higher than 0.10. We used
the Clopper-Pearson method9 with a 90% confidence interval of
the p-value to determine the stop condition.

For the air traffic data, we have sufficiently many long path-
ways to perform this analysis also for higher-order Markov mod-
els. For order n, we extracted all n+1-grams from the data. Since
we use the conditional entropy as a test statistics, we estimate the
average amount of information necessary to determine the des-
tination of a passenger, given information about the sequence of
airports the passenger has visited. In this way, the Markov order
sets the horizon of how much information an observer at an air-
port has about passengers to determine their next step. For each
Markov order n, we performed two tests: one in which we only in-
cluded n-grams of length n+1, and one in which we also included
all shorter n-grams of length 2, 3, . . . n from each pathway. Ex-
cluding shorter n-grams corresponds to consider only passengers
that already have visited at least n airports, which we refer to as
the maximum memory of passengers at airports. Including shorter
n-grams corresponds to consider all passengers and all their air-
port visits, which we refer to as typical memory of passengers at
airports.

For each Markov order n, we performed the same resampling
procedure as described above. We split all n+ 1-grams into two
sets, one that consists of the n first airports of each n+1-gram and
one that consists of the n last airports of each n+ 1-gram. Then
we generated resampled n+ 1-grams by randomly recombining
the two sets such that each resampled n+1-gram begins with an
n-gram from the first set and ends with an n-gram from the other
set, with n� 1 airports overlapping in the middle. In this way,
the resampled n+1-grams will be of Markov order n�1. In the
typical memory approach, we only resampled the longest n+ 1-
grams, since all other 2-, 3-, . . . n-grams are of order n � 1 or
lower. We repeated this resampling 100 times for each Markov
order n and compared the actual conditional entropies with the
ones given by the null hypothesis that they are generated from
Markov order n�1. Unlike in the main text where we weight the
conditional entropies by PageRank, here we use the actual visit
frequencies.

Supplementary Figure 3 shows the results. Even if air traffic
has statistically significant memory effects up to Markov order
four (Supplementary Fig. 3a), shorter itineraries dominate (73%
of all itineraries are of length three or shorter) and a second-order
Markov model accurately captures the typical memory dynam-
ics (Supplementary Fig. 3b). For typical memory, the conditional
entropy drops by 1.1 bits from first to second Markov order but
only by 0.3 bits from second to third Markov order. Both results
are statistically significant and we conclude that a second-order
Markov model seems to successfully balance model complexity
and accuracy. A more thorough model selection analysis is be-
yond the scope of this work.

Finally, in Supplementary Table 1 we report the conditional en-
tropies of first- and second-order Markov dynamics together with
the two-step and three-step return rates. Here we also comple-
ment the results reported in Table 1 of the main manuscript with
the 10th and 90th percentiles of the bootstrap values. The boot-
strapping shows that the memory effects are significant. For air-
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ports and cities, the data are sufficiently rich that more than two
digits are significant. For the patient data, however, many path-
ways through the hospitals are used by only one or a few patients.
Therefore, the bootstrap estimates vary more and sometimes ex-
clude the summary statistics of the raw data. Nevertheless, there
is a significant effect of second-order Markov dynamics in all
cases.

Supplementary Note 3

Community detection of memory networks

We have seen that a second-order Markov model has important
effects on dynamic processes on networks. To better understand
these effects, we simplified the dynamics and highlighted the im-
portant structures of the dynamics with community detection, cur-
rently the best way to comprehend dynamics on a large scale10.
With community detection, we can compare the structure of first-
and second-order Markov dynamic. Since we are interested in the
dynamics, we have chosen to work with the flow-based map equa-
tion framework11. Alternative flow-based methods exist12,13, but
the map equation framework easily allows us to maintain the me-
chanics of the method and only modify the dynamics. That is, we
can cluster physical nodes and use memory nodes for controlling
the dynamics. This advantageous feature allows us to efficiently
compare the first- and second-order Markov dynamics. Since we
are interested in overlapping modules, we build our new method
on a generalization of the map equation to overlapping modules14.

The map equation

The map equation framework is an information-theoretic ap-
proach that takes advantage of the duality between compressing
data and finding regularities in the data. Given module assign-
ments M of all nodes in the network, the map equation mea-
sures the description length L(M) of a random walker who moves
within and between modules from node to node by following the
links between the nodes15:

L(M) = q
x

H(Q)+
m

Â
i=1

pi
�H(P i) (7)

Here the entropy H(Q) measures the average per-step descrip-
tion length of movements between modules derived from module-
enter frequencies Q of all m modules and H(P i) measures the
average per-step description length of movements within module
i derived from node-visit and module-exit frequencies P i. The
description lengths are weighted by their frequency of use, qix
and pi

�, respectively. The visit frequencies can be obtained by
first calculating the PageRank of nodes and links with smart tele-
portation as described in the Methods section of the main text, or
directly from the data if the links represent flow themselves.

In any case, finding the optimal partition of the network by as-
signing each node to one or more modules corresponds to testing
different node assignments and picking the one that minimizes
the map equation.

The challenge is to handle the large search space of possible
solutions when nodes can be assigned to any number of overlap-
ping modules. Therefore, we limit the search space here and only
allow each memory node to be assigned to a single module. In
this way, the efficient16 search algorithm for hard partitions in In-
fomap17,18 can be used with only small modifications. Instead of
applying the search algorithm on the standard network, we apply
it on the memory network that contains transition information be-

tween memory nodes (links). The method is thus a form of link
partitioning1,2. The search algorithm initiates each memory node
in its own module and proceeds as Infomap for hard partitions
of regular nodes17, with one important difference: When two or
more memory nodes of the same physical node are assigned to
the same module, the description length must capture the fact that
the memory nodes share the same codeword. That is, to obtain
the visit frequency of a physical node in a module, we sum the
visit frequencies of all memory nodes of that physical node in the
module. We then use this visit frequency to derive the optimal
codeword length. This procedure is essential to ensure that the
map equation measures the optimal description length of a ran-
dom walker navigating between physical nodes. In this way, the
compression algorithm remains the same and only the dynamics
change. Moreover, we ensure that the community detection re-
sults only depend on memory effects by representing first-order
Markov dynamics flow in a memory network, with each memory
node having the out-links of its corresponding physical node in
the standard network.

Supplementary Figure 4 illustrates the mechanics of the map
equation for first- and second-order Markov dynamics. The first-
order passenger trigrams in b are derived from the actual trigrams
in c in two steps. We first derived the normalized out-links of
the two memory nodes in Las Vegas. Since these memory nodes
should represent first-order Markov dynamics, their out-links are
identical and equal to the proportion of passengers flying to San
Francisco and New York, respectively. We then multiplied these
transition probabilities by the number of passengers that arrive in
Las Vegas from San Francisco and New York, respectively. In
this way, for example,

wM1
SLS = wM2

SL

wM2
SLS +wM2

NLS

wM2
SL +wM2

NL

, (8)

where

wM2
SL = wM2

SLS +wM2
SLN (9)

and

wM2
NL = wM2

NLN +wM2
NLS. (10)

Further,

wM1
tot = wM2

tot = 2wM2
SL +2wM2

NL (11)

corresponds to the total passenger weight involved in the set of
two consecutive flight legs illustrated in Supplementary Fig. 4.

Memory and heuristic algorithms

The link clustering2 and clique percolation19 methods can be seen
as trying to account for second-order Markov dynamics. They
operate by increasing connectivity within modules and decreasing
connectivity between modules, albeit in different ways. Below we
establish this flow interpretation of the two methods.

The link clustering method measures the similarity between
two links k ! i and k ! j connected at a common “keystone”
node k as the ratio between all shared nodes and the total num-
ber of nodes reached in two steps from the keystone node via the
links. That is, the similarity is |n+(i)\ n+( j)|/|n+(i)[ n+( j)|,
where n+(i) is the set of neighbours of i. Supplementary Fig-
ure 5a illustrates the similarities between nodes. With the key-
stone node in the middle, the dashed link is connected to five
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other links. The similarity is 1 with the links in the same module,
because they share all nodes two steps from the keystone node
via the links. However, the similarity is only 1/7 with the links
in the other module, because they only share the keystone node
of all seven nodes that can be reached in two steps from the key-
stone node via the links. With these link weights between links,
it is clear that the link clustering method identifies two modules
overlapping at the node in the centre. How can we interpret this
machinery as constraints on flow? With similarities represented
as links between memory nodes, as in Supplementary Fig. 5a, we
see that a random walker would rarely switch between the mod-
ules. Conditional on being at the node in the centre, and assuming
that the link self-similarity is 1, the transition rate decreases from
1/2 to 1/7 with weights derived according to the link community
procedure. In this way, the persistence time increases in the two
modules and allow for efficient compression of the flow.

Clique percolation identifies a module as the maximum set of
nodes that can participate in a percolation of adjacent cliques. A
clique is a fully connected sub-graph and two cliques are adjacent
if they share all nodes but one. Here we consider sub-graphs of
size three, triangles, such that two triangles are adjacent if they
share two nodes or, equivalently, one side. Supplementary Fig-
ure 5b illustrates. Since a triangle can percolate between the left-
most four nodes or the rightmost nodes, the method identifies two
modules overlapping at the node in the centre. How can we in-
terpret this process as constraints on flow? Assume that a random
walker steps from node m to node l. The two adjacent triangles
that share this link m ! l have link sides l ! o and l ! n, respec-
tively, connected to node l. We now restrict the random walker
to only move along those links, or back from where it came. If
we use memory nodes to represent these constraints, as in Sup-
plementary Fig. 5b, the transition rate between the two modules
drops to zero. In fact, the random walker will be blocked by the
very same module boundaries as given by the clique percolation
method. Again, the persistence time increases in the two modules
and allow for efficient compression of the flow.

By interpreting the machinery of the two methods as con-
straints on flow, we see that they can be seen as trying to infer
second-order Markov dynamics from the structure of the standard
network. Moreover, those constraints give longer persistence time
in modules. And indeed, as we have seen from using real data of
second-order dynamics, the persistence time in modules does in-
crease when accounting for higher-order memory effects. As a re-
sult, this flow interpretation establishes an interesting connection
between two heuristic methods that operate on standard networks
and our inherently flow-based method that operates on memory
networks. We conclude that this flow interpretation provides more
principled grounds for link clustering and clique percolation.

Results of the statistical analysis

We summarize with the results of the community detection anal-
ysis and the closely related ranking in Supplementary Table 2.
In addition to the results already presented in Table 1 of the main
manuscript, here we also report the 10th and 90th percentiles from
the bootstrap analysis. Because of the greedy and stochastic na-
ture of the search algorithm, the confidence intervals are wider
than for the entropies and return rates reported in Supplemen-
tary Table 1. Nevertheless, there is a significant difference be-
tween the structure of first- and second-order Markov dynamics.
In a second-order Markov model, the dynamics are confined in
smaller and more overlapping modules.

Supplementary Note 4

Modelling second-order Markov e↵ects

So far, we have used empirical data and studied the effects of
second-order Markov dynamics on community detection, ranking
and spreading processes. Here we outline a different line of re-
search aimed at identifying simple mechanisms for explaining the
effects of memory in networks. The modelling approach can be
seen as an initial step in bringing together complementary knowl-
edge from previously disconnected areas of research: Biologists
have used empirical data to model animal movements in 2D with
correlated random walks20–22, computer scientists have used web
logs to predict web surfer behaviour with higher-order Markov
models23,24, and physicists have used theoretical models to study
dynamics on networks with biased random walks25–27. By com-
bining the empirical work for prediction with the theoretical work
for mechanistic understanding, we are in a good position to better
understand the effects of memory in integrated systems.

To combine the approaches, we developed a simple network
memory model that, fitted to data, can capture some basic features
of second-order Markov dynamics in real systems. In addition to
its explanatory power, the memory model also summarizes the
dynamics of a system and makes it easy to compare the dynamics
between different systems. Below, we first describe the memory
model, then we show a procedure for fitting the model parameters
to real data, and finally we illustrate, with ranking as an example,
how this modelling approach can be used for a mechanistic un-
derstanding of the effects of second-order Markov dynamics.

The memory model

We build a tractable model for memory dynamics by coarse-
graining the description of second-order Markov data. We define
three different types of transition between nodes: a return step
r2, where the walker goes from i to j to i; a triangular step r3,
where the walker goes from i to j to a neighbour of i; and an ex-
ploratory step r3<, for which the destination of the step is neither
of those previously described. These events correspond to tran-
sitions of the types #”i j ! #”ji, #”i j !

#        ”
js(i), and #”i j !

#       ”
jg(i), where

s(i) is a member of the set of neighbours of i and g(i) is a mem-
ber of the set of nodes different from i and the set of neighbours
of i (in principle, we can chose the set of either in-neighbours,
out-neighbours, or neighbours in an undirected sense. In this dis-
cussion, we chose the latter option for the sake of simplicity).

The memory model is defined by assigning a different preva-
lence w( #”i j ! #”jx) to each type of transition, r2, r3, and r3<, re-
spectively (see Supplementary Fig. 6), where the index underlines
the length of the cycle associated with the process. For instance,
the probability of performing a return step from #”i j , and thus of
observing a cycle of length 2, is

preturn = r2/(r2 + r3|s(i)|+ r3<|g(i)|) (12)

if #”ji exists; otherwise, it is zero. |s(i)| is the number of elements
in s(i). Tuning the values of rx gives more or less importance to
each type of step. Importantly, the values of the parameters can
easily be evaluated in empirical data, as shown below. Without
loss of generality, we impose the constraint r2+r3+r3< = 1, such
that rx can be understood as the probability of an event of type x
occurring. The memory model is described by transition prob-
abilities p̂( #”i j ! #”

jk), approximating the original transition prob-
abilities p( #”i j ! #”

jk), and depending on the value of the above
parameters and on the type of transitions between #”i j and

#”
jk.
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Fitting the memory model

We now seek to find parameter values of r2, r3, and r3< to model
dynamics as close as possible to observed M2 data. The model
is thus fitted by minimizing the difference between the observed
transition probabilities p( #”i j ! #”

jk) measured from the trigrams
and the transition matrix of the model p̂( #”i j ! #”

jk). To do so, we
look for the values of r2 and r3, minimizing the Kullback�Leibler
(KL) divergence

DKL = Â
#”i j

p( #”i j)Â
#”
jk

p( #”i j ! #”
jk) log

p( #”i j ! #”
jk)

p̂( #”i j ! #”
jk)

, (13)

where p( #”i j) is, as before, the PageRank of node #”i j . Mini-
mizing the KL divergence is equivalent to maximizing the log-
likelihood28, but since we use the conditional entropy to quantify
the constraints on flow, we find it natural to use the information-
theoretic KL divergence as the objective function.

In practice, in order to minimize the KL divergence, we first
analytically derive its partial derivatives with respect to r2 and
r3 (r3< does not appear in the expression of the KL divergence
because of the normalization r3< = 1� r2 � r3). Then we set the
derivatives to zero and iteratively solve the two coupled equations
with a simple bisection method.

The parameters found by performing this optimization are sum-
marized in Supplementary Table 4. The table also reports values
for r̂2, the best parameter in a simplified model where we impose
that r3 = r3<, and thus only differentiate between return steps and
other type of steps. We quantified the relative KL reduction as
1 minus the ratio between the optimized KL divergence and the
unbiased first-order Markov model with r2 + r3 + r3< = 1/3 (K̂L
refers to the simplified model); high values of the KL reduction
imply a higher relative gain of fitting the data with the memory
model over a first-order Markov model. In most cases, we ob-
serve that the inclusion of memory through the parameters r2, r3,
and r3< significantly improves the accuracy of the modelling. A
majority of networks show a high value of r2, as expected. We
also observe that the reduction induced by relaxing the constraint
r3 = r3< tends to be small, suggesting that the definition of re-
turn steps is the most important ingredient in producing realistic
pathways. Supplementary Figure 7 shows the KL divergence re-
duction when tuning r2 and r̂2.

It is worth mentioning that the optimization procedure provides
a unique solution because the search landscape is indeed very
smooth. For example, Supplementary Fig. 7 shows that the KL
divergence has a unique minimum (the reduction has a maximum)
as a function of r2 with r3 fixed. Also the reversed scenario, fixed
r2 and variation in r3, has a similar smooth form with a unique ex-
tremum. Moreover, the bootstrap analysis shows that the optimal
parameters are very robust.

Analytical analysis of second-order Markov e↵ects on

ranking

Here we use the model to illustrate the effects of second-order
Markov dynamics on ranking. We use schematic networks and,
for simplicity, we focus on unweighted networks. In this case,
W (i ! j) is simply the adjacency matrix Ai j of the network, with
Ai j = 1 if there is a link going from i to j and zero otherwise.
It is also useful to introduce the in- and out-degrees of each node
defined by s in

j =Âi Ai j and sout
i =Â j Ai j. As a first step, we focus

on the basic case when each type of transition is equally probable,

r2 + r3 + r3< = 1/3. In this case, the memory model is equivalent
to a standard Markov random walk on the physical network. To
show this, we first note that (7) in the main manuscript reduces to

P(
#”
jk; t +1) = Â

i
P( #”i j; t)

A jk

sout
j

. (14)

It is straightforward to show that the stationary solution of the
process is p( #”

jk) = 1/L if the graph is Eulerian (sout
j = s in

j for
all j). One thus recovers the well-known result that the stationary
probability of finding a walker on a node is proportional to its de-
gree in undirected networks. If the underlying network is strongly
connected, this is the only stationary solution of the process. By
using the fact that

P( j; t) = Â
i

P( #”i j; t), (15)

and summing over j in Supplementary Equation (14), we find that

P(k; t +1) = Â
j

P( j; t)
A jk

sout
j

, (16)

thus recovering the standard master equation for a random walk
process, driven by the transition matrix A jk/sout

j .
If the standard random walk is ergodic on a graph, the memory

model is also ergodic on the same graph for any value of r2, r3,
and r3<, as long as each parameter is strictly positive, such that no
transition is forbidden by the bias. In systems where ergodicity
is not verified, we use link teleportation as described above. The
robustness of link teleportation under variations of the teleporta-
tion probability 1�a29 is clear, after noting that the stationary
solution of the first-order Markov process is p( #”

jk) = 1/L when
each node of the physical network has the same in-degree and
out-degree (e.g., if the network is undirected), independently of
a .

We now turn to evaluating the effects of r2, r3, and r3< on Page-
Rank. To do so, we use a perturbation analysis of a close to 0,
where a local approximation of PageRank is valid. For the sake of
simplicity, we consider the case of unweighted networks. We fur-
ther assume that the graph is Eulerian, so that the known solution
p( #”

jk) = 1/L for r2 + r3 + r3< = 1/3 can be used as a baseline. In
this case, it is straightforward to show that the dominant contri-
bution to the stationary solution is

p( #”
jk) =

1�a
L

+
a
L Â

i
Ai j p̂(

#”i j ! #”
jk)+o(a2)

=
1�a

L
+

a
L Â

i
Ai j

A jkw( #”i j ! #”
jk)

Âl A jlw(
#”i j ! #”

jl)
+o(a2). (17)

Intuitively, the PageRank of memory node
#”
jk increases when the

bias of the random walk process favours transitions #”i j ! #”
jk over

other transitions leaving #”i j . Different types of scenarios are pos-
sible. As an illustration, we first focus on the role of r2 for
a network without triangles, such as the one of Supplementary
Fig. 8a. As expected, higher values of r2 tend to favour recipro-
cated links. Higher-order contributions, corresponding to paths
of length longer than 1, are expected to favour reciprocated links
connected to many other reciprocated links, etc., due to the itera-
tive nature of PageRank. For instance, for memory node

# ”
12, one

finds

p( # ”
12) =

1�a
8

+
a
8
(

1
2
+

8/10
8/10+1/10

)+o(a2)
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=
1
8
(1+

7a
18

)+o(a2), (18)

as shown in Supplementary Fig. 9. For
# ”
21, in contrast, the linear

approximation is uniform

p( # ”
21) =

1
8
+o(a2), (19)

and higher-order contributions are necessary to show that the bias
boosts the PageRank. From (11) in the main manuscript, we see
that physical nodes are important if they have many central in-
coming links. In the first example of Supplementary Fig. 8, node
2 is very central while node 4 is not. In Supplementary Fig. 8b,
we also illustrate the role of r2 on centrality, and show that high
values of r2 tend to favour links belonging to many triangles, as
expected.
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