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Compression of Flow Can Reveal Overlapping-Module Organization in Networks
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To better understand the organization of overlapping modules in large networks with respect to
flow, we introduce the map equation for overlapping modules. In this information-theoretic frame-
work, we use the correspondence between compression and regularity detection. The generalized map
equation measures how well we can compress a description of flow in the network when we partition
it into modules with possible overlaps. When we minimize the generalized map equation over
overlapping network partitions, we detect modules that capture flow and determine which nodes at
the boundaries between modules should be classified in multiple modules and to what degree. With a
novel greedy-search algorithm, we find that some networks, for example, the neural network of the
nematode Caenorhabditis elegans, are best described by modules dominated by hard boundaries, but
that others, for example, the sparse European-roads network, have an organization of highly over-
lapping modules.
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I. INTRODUCTION

To discern higher levels of organization in large social
and biological networks [1-5], researchers have used hard-
clustering algorithms to aggregate highly interconnected
nodes into hard, nonoverlapping modules [6—8] because
they have assumed that each node plays only a single
modular role in a network. Recently, because researchers
have realized that nodes can play many roles in a network,
they have detected overlapping modules in networks using
three approaches: a hard-clustering algorithm that is run
multiple times [9,10], a local clustering method that gen-
erates independent and intersecting modules [11-14], and
link clustering, which assigns boundary nodes to multiple
modules [15-17]. However, all these approaches have
limitations: The first and second approaches require sev-
eral steps or tunable parameters to infer overlapping mod-
ules, and the third approach necessarily overlaps all
neighboring modules. In this paper, we introduce a flow-
based and information-theoretic approach to revealing the
overlapping-module organization of large networks. From
fundamental principles of information theory, we derive a
single objective function and can deduce simultaneously:
How many modules are in a network? Which nodes belong
to which modules? And which nodes should belong to
multiple modules and to what degree? If we were to assign
nodes only to single modules, we would run the risk of
breaking functional components of the network. However,
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with possibly overlapping modules of highly intercon-
nected nodes that effectively capture flow for long times,
we can identify good candidates for functional components
in the network [6].

We seek to simplify a network based on the patterns of
flow through the system and use the flow to determine what
role nodes on the boundaries between modules play. To
resolve which boundary nodes should belong to multiple
modules, we take advantage of the information-theoretic
principle that all regularities in data can be used to com-
press the data. That is, efficient descriptions of the flow
through the system must necessarily highlight important
structures in the network with respect to the flow. For
example, in Fig. 1(a), Keflavik airport in Reykjavik,
Iceland, connects Europe and North America in the global
air-traffic network. When we summarize the network in
modules with long flow-persistence times, should
Reykjavik belong to Europe, to North America, or to
both? In our framework, the answer depends on the traffic
flow. More precisely, Reykjavik’s role in the network
depends on how many passengers fly to Keflavik from
Europe and from North America and to what degree they
visit Iceland as tourists and immediately return back home
vs to what degree they use Keflavik as a transit between
continental Europe and North America. Were there little or
no traffic from and to North America, then Europe and
North America would naturally form two disjoint modules,
with Reykjavik being in Europe. But with many passengers
traveling to Reykjavik from both Europe and from North
America, the character of the flow must determine
Reykjavik’s role in the network. If intercontinental-transit
flow dominates, Europe and North America form an inte-
grated flow system that we can efficiently summarize in a
single module. If instead, returning-tourist flow dominates,
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FIG. 1. (a) Map showing that part of the global air-traffic
network in which Keflavik airport in Reykjavik, Iceland, con-
nects Europe and North America. The map equation for over-
lapping modules can exploit regularities in the boundary flow
between modules. The three colored lines in (b) show the
description length as a function of the proportion of returning
passengers for three different partitions: North America, Europe,
and Reykjavik in one big module (green solid line); North
America and Europe in two nonoverlapping modules, with
Reykjavik in either of the modules (black dashed line); and
North America and Europe in two overlapping modules, with
Reykjavik in both modules (blue dashed-dotted line).

Europe and North America form two separate flow sys-
tems, connected in Reykjavik, that we can more efficiently
summarize in two overlapping modules. By generalizing
the information-theoretic clustering method called the map
equation [18,19] to overlapping structures, we can formal-
ize this observation and use the level of compression of a
modular description of the flow through the system to
resolve which nodes should be assigned to multiple mod-
ules and form fuzzy boundaries between modules. With
this approach, modules will overlap if they correspond to
separate flow systems with shared nodes.

In the next section, we review the map-equation
framework, introduce the map equation for overlapping
modules, and explain how it exploits returning flow

near module boundaries. The mathematical framework
works for both generalized and empirical flow, but in
this paper we illustrate the method by exploring the
overlapping-module structure of several real-world net-
works based on the probability flow of a random
walker. We also test the performance on synthetic net-
works and compare the results with other clustering
algorithms. Finally, in Sec. III, we provide complete
descriptions of the map equation for overlapping mod-
ules and the novel search algorithm.

I1. RESULTS AND DISCUSSION
A. The map equation

The mathematics of the map equation is designed to take
advantage of regularities in the flow that connects the
components of a system and generates their interdepend-
ence. The flow can be, for example, passengers traveling
between airports, money transferred between banks, gossip
exchanged among friends, people surfing the web, or, what
we use here as a proxy for real flow, a random walker on a
network guided by the (weighted, directed) links of the
network. Specifically, the map equation measures how
well different partitions of a network can be used to com-
press descriptions of flow on the network and utilizes the
rationale of the minimum-description-length principle. We
quote Peter Griinwald [20]: “...[E]very regularity in the
data can be used to compress the data, i.e., to describe it
using fewer symbols than the number of symbols needed to
describe the data literally.” In other words, the map equa-
tion gauges how successful different network partitions are
at finding regularities in the flow on the network.

We employ two regularities for compressing flow on a
network. First, we use short code words for nodes visited
often and, by necessity, long code words for nodes visited
rarely, such that the average code-word length will be as
short as possible. Second, we use a two-level code for
module movements and within-module movements,
such that we can reuse short code words between modules
with long persistence times.

Because we are not interested in the actual code words,
but only in the theoretical limit of compression, we use
Shannon’s source-coding theorem [21], which establishes
the Shannon entropy H(p) as the lower limit of the average
number of bits per code word necessary to encode a
message, given the probability distribution p with proba-
bilities p;, p, of the code words,

H(p) = _Zpilogzpi‘

For example, if there is a message “ABABBAAB...”
for which the symbols “A” and “B’’ occur randomly with
the same frequency, that is, for which A and B are inde-
pendent and identically distributed, the source-coding
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theorem states that no binary language can describe the
message with fewer than —1log, } — 1log, 4 = 1 bit per
symbol. However, if A occurs twice as often as B, the
regularity can be exploited and the message compressed to
—1logy 1 — %log, 3 = 0.92 bit per symbol. For flow on
networks, we measure how many bits are needed, on
average, for coding each step of the random walker by
calculating the Shannon entropy based on the node-visit
frequencies.

But flow or a random walker does not visit nodes inde-
pendently. For example, if a network has a modular struc-
ture, once a random walker enters a tightly interconnected
region in the network, in the next step she will most likely
visit a node in the same tightly interconnected region, and
she tends to stay in the region for a long time. To take
advantage of this regularity and further compress the
description of the walk, for each tightly interconnected
region, we use a separate module codebook with an extra
exit code that is used when the random walker exits the
module, and an index codebook that is used after the exit
code to specify which module codebook is to be used next.
Now we can make use of higher-order structure in a net-
work. For a modular network, we can describe flow on the
network without ambiguities in fewer bits, using a two-
level code, than we could do with only one codebook,
because we use the index codebook only for movements
between modules and can reuse short code words in the
smaller module codebooks.

Given a network partition M, it is now straightforward to
calculate the per-step-minimum-description length L(M)
of flow on the network. We use the Shannon entropy
equation to calculate the average description length of
each codebook and weight the average lengths by their
rates of use. For a modular partition M with m modules, the
map equation takes the following form:

L) = ¢ H(Q) + 3 pl, H(P). (1)

i=1

For between-module movements, we use ¢, for the rate of
use of the index codebook with module code words used
according to the probability distribution Q. For within-
module movements, we use p{ for the rate of use of the
i-th codebook with node and exit code words used accord-
ing to the probability distribution 2.

By minimizing the map equation over network parti-
tions, we can resolve how many modules we should use
and which nodes should be in which modules to best
capture the dynamics on the network. See the link given
in Ref. [22] for a dynamic visualization of the mechanics of
the map equation. Because the map equation depends only
on the rates of node visits and module transitions, it is
universal to all flow for which the rates of node visits and
module transitions can be measured or calculated. The
code structure of the map equation can also be generalized

to make use of higher-order structures. Reference [23]
shows how a multilevel code structure can reveal hierarch-
ical organization in networks, and in the next section, we
show that we can capitalize on overlapping structures by
relaxing the constraint that a node can belong only to one
module codebook.

B. The map equation for overlapping modules

The code structure of the map-equation framework is
flexible and can be modified to uncover different structures
of a network as long as flow on the network can be
unambiguously coded and decoded. As we will show
here, by relaxing the constraint that a node can belong
only to one module codebook and by allowing nodes to be
information free ports, we can reveal the organization of
overlapping modules in networks. To see how, let us again
study the air traffic between North America and Europe in
Fig. 1(a). Suppose that cities in North America and Europe
belong to two different modules, which for simplicity are
assumed to be identical in size and composition, and we
assign membership to Reykjavik between North America
and Europe. For a hard partition, we would assign
Reykjavik to the module that most passengers travel to
and from, and if the traffic flow were the same, we could
choose either module. But if the flow to and from
Reykjavik were dominated by American and European
tourists visiting Iceland for sightseeing before returning
to their home continent, both Americans and Europeans
would consider Iceland as part of their territory. We can
accommodate for this view if we allow nodes to belong to
multiple module codebooks; depending on the origin of the
flow, we use different code words for the same node.

With the map equation for overlapping modules, we can
measure the description length of flow on the network with
nodes assigned to multiple modules. By minimizing the
map equation for overlapping modules, we can resolve not
only how many modules a network is organized into and
which nodes belong to which modules, but also which
nodes belong to multiple modules and to what degree.

The pattern of flow—tourists returning to Iceland
or businessmen in transit on intercontinental trips—
determines whether we should assign Reykjavik to North
America, Europe, or both. Or, conversely, when we decide
whether Reykjavik should be assigned to North America,
Europe, or both, we reveal the pattern of boundary flow
between modules, as Fig. 1 illustrates. In this hypothetical
example, assigning cities to two nonoverlapping modules
is always better than assigning all cities to one module. But
for a sufficiently high proportion of returning flow, the
overlapping-module solution with Reykjavik in both mod-
ules as a free port provides the most efficient partition to
describe flow on the network.

The map equation for overlapping modules can take
advantage of regularities in the boundary flow between
modules. To measure the length of an overlapping-module
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FIG. 2. The code structure of the map equation (a) without
overlapping modules and (b) with overlapping modules. The
color of a node in the networks at the left and of the correspond-
ing block in the code structures at the right represents the module
assignment; the width of a block in the code structures represents
the node-visit rate; and the height Hof the code-structure blocks
represents the average length of code words in the codebooks.

description of flow on a network, we must decide how the
flow switches modules in order to calculate the node-visit
rates from different modules of multiply assigned nodes. In
Sec. III, we provide a detailed description of how a random
walker moves in an overlapping-module structure, but the
rule is simple: When a random walker arrives at a node
assigned to multiple modules, the walker remains in the
same module if possible. Otherwise, the random walker
switches, with equal probability, to one of the modules to
which the node is assigned.

Figure 2 illustrates the code structure of a hard and a
fuzzy partition of an example network with the dynamics
derived from a random walker. For this network, the figure
shows that an overlapping-module description allows us to
describe the path of a random walker with fewer bits than
we could do with a hard network partition. With over-
lapping modules, we halve the use of the index codebook,
since the rate of module switching halves. Because we
consequently use the exit codes in the now-identical mod-
ule codebooks less often, the description of movements
within modules also becomes shorter, even if the average
code-word length increases. Turning the reasoning around
again, given the overlapping-module organization, we have
learned that returning flow characterizes the boundary flow
between the modules.

With the mathematical foundation in place, we need
an algorithm that can discover the best partition of the
network. In particular, which nodes should belong to mul-
tiple modules and to what degree? For this optimization
problem, we have developed a greedy-search algorithm
that we call “fuzzy Infomap.” (Details are given in
Sec. IIl.) Here we give a short summary of fuzzy
Infomap designed to provide good approximate solutions
for large networks. We start from Infomap’s hard clustering
of the network [19] and then execute the two-step

algorithm. In the first step, we measure the change in the
description length when we assign boundary nodes, one by
one, to multiple modules. This calculation is fast, but
aggregating the changes in the second step is expensive
and often requires recalculating all node-visit rates.
Therefore, we rank the individual multiple-module assign-
ments and, in a greedy fashion, aggregate the individual
best ones to minimize the description length.

C. Overlapping-module organization in
real-world networks

To illustrate our flow-based approach, we have clustered
a number of real-world networks based on the random-
walk model of flow. Figure 3 shows researchers organized
in overlapping research groups in the field of networks
science. The underlying coauthorship network is derived
from the reference lists in three review articles [1,6,24]. In
this weighted and undirected network, we connect two
researchers with a weighted link if they have coauthored
one or more research papers. For every coauthored paper,
we add to the total weight of the link a weight inversely
proportional to the number of authors on the paper. Our
premise is that two persons who have coauthored a paper
have exchanged information, information that they can
subsequently share with other researchers and induce a
flow of information on the network. The map equation
can capitalize on regularities in this flow, and Fig. 3 high-
lights one area of the coauthorship network with several
overlapping research groups. For example, assigning Jure
Leskovec to four research groups contributes to maximal
compression of a description of a random walker on the
network. Based on this coauthorship network, Leskovec is
strongly associated with Dasgupta, Mahoney, Lang, and
Backstrom, but also with groups at Cornell University,
Carnegie Mellon University, Stanford University, and the
Yahoo! Research organization. The size of the modules and
the fraction of returning flow at the boundary nodes deter-
mine whether hard or fuzzy boundaries between research
groups lead to optimal compression of flow on the network.

Table I shows the level of compression and overlap of a
number of real-world networks. The networks are sorted
from highest to lowest compression gain when allowing for
overlaps. High compression corresponds to strong regular-
ities (column C in Table I), and high compression gain for
overlapping modules means that the network is character-
ized by interconnected flow systems (column ACy,,, in
Table I). We find the highest compression gain in the
European-roads network, which is a sparse network with
road intersections as nodes and the roads themselves as
links. Many intersections at boundaries between modules
are classified in multiple modules, because intersections
connect only a few roads and the return rate of the random
flow is relatively high.

By contrast, compressing random flow in overlapping
modules gives only a marginal gain over hard clustering in
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FIG. 3. Network scientists organized in overlapping research groups. The colors of the nodes represent overlapping
research groups identified by the map equation, the size of the nodes represents the importance of the researchers as quantified by
the node-visit rates of the random walker; and the pie charts in certain nodes (for instance, for Amaral and Guimera in the upper right)
represent the fractional association with the different research groups for researchers that have multiple assignments.
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TABLE I. The overlapping organization and the level of compression of eight real-world networks. For each network with n nodes
and [ links, we report the hard-partition compression C obtained with Infomap, the additional compression obtained with fuzzy

Infomap, and the fraction of nodes that are assigned to multiple modules.

Network n l C AChyy Niuzay/N
European-roads network [25] 1018 1274 46.2% 10.4% 35.5%
Western-states power grid [26] 4941 6994 53.4% 8.84% 27.5%
Human-diseases network [27] 516 1188 46.4% 2.87% 15.3%
Coauthorship network [28] 552 1317 48.9% 2.47% 14.6%
World air routes [29] 3618 14142 31.1% 1.24% 13.9%
U.S. political blogs [30] 1222 16714 4.13% 0.35% 5.81%
Swedish political blogs [31] 855 10315 0.50% 0.18% 4.79%
Neural network of C. elegans[26] 297 2345 1.16% 0.13% 2.69%

the highly interconnected and directed neural network of
the nematode Caenorhabditis elegans, in which network
less than 3% of the neurons are classified in multiple
modules. Even if there is evidence that the neural network
is modular, we most likely underestimate the degree of
overlap with a random-walk model of flow.

In the middle of the table, the world-air-routes network
shows a relatively low compression gain, given the many
cities classified in multiple modules. For this network, the
compression gain would be much higher if, instead of
random flow on the links, we were to describe real pas-
senger flow with a higher return rate.

D. Comparing the map equation for overlapping
modules with other methods

Depending on the system being studied and the research
question at hand, researchers develop clustering algorithms
for overlapping modules based on different principles. For
example, some researchers take a statistical approach and
see modules as nonrandom features of a network, while
other researchers use a local definition and identify inde-
pendent and intersecting modules, or take a link perspective
and assign all boundary nodes to multiple modules.
Consequently, the final partitions are quite different, and
it is interesting to contrast our information-theoretic and
flow-based approach, implemented in fuzzy Infomap, with
these approaches, represented here by the osLom [13],
clique-percolation [32], and link-communities [16]
methods.

OSLOM defines a module as the set of nodes that
maximizes a local statistical-significance metric. In other
words, OSLOM identifies possibly overlapping modules that
are unlikely to be found in a random network. Clique
percolation identifies clusters by sliding fully connected
k cliques to adjacent k cliques that share k-1 vertices with
each other. A module is defined as the maximal set of
nodes that can be visited in chained iterations of
this operation, and the overlaps consist of the shared
nodes between modules that do not support the slide op-
eration across the boundary. Finally, the link-communities

approach creates highly overlapping modules by aggregat-
ing nodes that are part of a link community. The link
communities themselves are built by hierarchical cluster-
ing based on a similarity score between links, the primal
actors of the method.

To compare the methods at different degrees of overlap,
we use a set of synthetic networks presented in Ref. [33]. In
Table II, we include six statistics for the four methods
applied to synthetic networks with 1000 nodes and three
different degrees of overlap. (See Table II for details.) The
first group of partition numbers describe the number of
detected modules, the number of nodes that are assigned to
multiple modules, and the total number of assignments. To
interpret the results from a flow perspective, we include the
index, module, and total code length for describing a
random walker on the network for the given network
partition.

Table II shows that fuzzy Infomap and OSLOM generate
similar partitions for low and medium degrees of overlap,
but the trend as the degree of overlap becomes higher
indicates fundamental differences. By assigning boundary
nodes to more modules than OSLOM prefers, fuzzy Infomap
identifies modules with longer persistence times. The
shorter index-code length resulting from the fewer transi-
tions compensates for the longer module-code length
from the larger modules. As a result, with the overlapping
partitions generated by the fuzzy Infomap method,
random flow can be described with fewer bits. But the
difference is small and is seen only in the second decimal
place when up to half of all the nodes are assigned to
multiple modules.

Clique percolation generates partitions with more mod-
ules but fewer assignments than either fuzzy Infomap or
OSLOM. From a flow perspective, smaller modules with less
overlap give more module switches that cannot be com-
pensated for by a shorter module-code length. The strength
of the clique-percolation method is its simple definition
that allows for easy interpretation of the results.

Designed with links as the primal actors used to identify
pervasive overlap in networks, the results of the link-
communities approach are quite different. For example,
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TABLE II. Comparing four different methods for identifying overlapping clusters. We run fuzzy Infomap, OSLOM, and link-
communities algorithms with their default settings and use clique-size four for the clique-percolation method. All values are averaged
over ten instances of random undirected and unweighted networks with 1000 nodes and predefined community structure, generated
with three different degrees of overlap [33]: Low-degree overlap corresponds to 100 nodes, medium-degree overlap corresponds to 300
nodes, and high-degree overlap corresponds to 500 nodes in multiple modules. All other parameters were held constant: The number of
nodes to which multiply assigned nodes are assigned was set to two; each cluster consisted of on average 20 nodes with a minimum of
10 and a maximum of 50 nodes; and the power-law exponent was set to —2 for the node-degree distribution and —1 for the module-
size distribution. Finally, the mixing parameter that controls the proportion of links within and between modules was set to 0.1.

Partition numbers Code length (bits)

Modules Overlaps Assignments Index Module Total

Low-degree overlap

Fuzzy Infomap 44 105 1228 1.7 59 7.6
OSLOM 44 89 1089 1.8 5.8 7.6
Clique percolation 43 104 1108 1.7 6.0 7.7
Link communities 3415 1000 9215 8.1 35 12
Medium-degree overlap

Fuzzy Infomap 53 303 1830 22 6.0 8.2
OSLOM 54 276 1277 23 5.9 8.2
Clique percolation 55 268 1283 23 6.1 83
Link communities 4457 1000 11628 8.7 35 14
High-degree overlap

Fuzzy Infomap 56 398 1676 2.6 6.1 8.8
OSLOM 61 462 1465 2.8 6.0 8.8
Clique percolation 73 388 1429 2.9 6.1 9.0
Link communities 4298 1000 11063 10 3.7 11

independent of the degree of overlap of the synthetic net-
works, each node belongs to, on average, ten modules.
From the perspective of a random-flow model, the persis-
tence time is short in the many small modules, and the
information necessary to encode the many transitions is
much larger than for the other methods. This result is
expected, as the link-communities method is tailored to
identify pervasive overlap in social networks in which
people belong to several modules and information flow is
far from random.

Often, performance is an important aspect to consider
when choosing a clustering method. Therefore, we mea-
sured the time it took to cluster the synthetic networks with
the different clustering algorithms. We stress that we used
presumably nonoptimized research code made available
online by its developers and that the performance depends,
of course, on the network. For the 1000-node synthetic
network used in our comparison, fuzzy Infomap used on
average 1.7 seconds for a single iteration of module growth
and 240 seconds for multiple growths, OSLOM used 330
seconds, the clique-percolation method 1.5 seconds, and
link communities were identified in 2.4 seconds.

We conclude this comparison by stressing that the re-
search question at hand must be considered when choosing
a clustering method. Fuzzy Infomap provides fast results
that, for a random-flow model, are similar to results gen-
erated by OSLOM and the clique-percolation method, at

least for moderate degrees of overlap. On the other hand,
for identifying pervasive overlap, researchers should con-
sider the link-communities model or a generalized flow
model with longer persistence times in smaller, highly
overlapping modules.

III. MATERIALS AND METHODS

Here we detail the map equation for overlapping mod-
ules and describe our greedy-search algorithm.

A. The map equation for overlapping modules

In this section, we explain in detail how we derive the
transition rates of a random walker between overlapping
modules. We also derive the conditional probabilities for
nodes assigned to multiple modules. We then express the
map equation [Eq. (1)] in terms of these rates, which allows
for fast updates in the search algorithm.

1. Movements between nodes assigned to
multiple modules

To calculate the map equation for overlapping modules,
we need the visit rates p, for all modules i € M, to which
a node « is assigned, and the inflow ¢, and the outflow
q;~ of all modules. We derive these quantities from the
weighted and directed links W,g, which we normalize
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such that w, 5 correspond to the probability of the random
walker moving to node B from node «:

{0, if there is no link from « to 3,
WD(,B = WaB : (2)
S W S oy otherwise.

When necessary, we use random ‘‘teleportation” or
jumping to guarantee a unique steady-state distribution
[34]. In other words, for directed networks, at rate 7, or
whenever the random walker arrives at a node with no out-
links, the random walker teleports to a random node in the
network. To simplify the notation, we set w,g = 1 /n for
all nodes « that have no out-links to all n nodes B in the
network.

The movements between multiply assigned nodes and
overlapping modules are straightforward. Whenever the
random walker arrives at a node that is assigned to multiple
modules, she remains in the same module if possible or
switches to one of the other modules randomly if not
possible. For example, assuming that the random walker
is in module i, she remains in module i when moving to
node B if node B is assigned to module i, i € Mg. But if
node B is not assigned to module i, i € M - she switches
with equal probability 1/|Mg| to any of the modules to
which node S is assigned (see Fig. 4). If we define the
transition function

1 if i =,
Sayp, = @ ifi#j and & Mg, 3)
0, ifi#j and i€ Mg,

we can now define the visit rates by the equation system

Poy =2 > Pﬂj5a,.,8j[(1 — Twga + T%:I 4

B JEMg

We solve for the unknown visit rates with the fast iterative
algorithm BICGSTAB [35]. Since every node in module i
guides a fraction (1 — 7)Y gz;w, 5 and teleports a fraction
7(1 — n;/n) of its conditional probability p, to nodes
outside module i, the exit probability of module i is

FIG. 4. Movements between nodes that are possibly assigned
to multiple modules. (a) Assuming that the random walker is in
module i, she remains in module i when moving to node S if
node 3 is also assigned to module i. (b) However, if node S is
not assigned to module i, she switches with equal probability to
any of the modules to which node B is assigned.

%«=zm{u—ﬂzww+r”;“} 5)

a€l af[

where n; is the number of nodes assigned to module i.

2. The expanded map equation for overlapping modules

To make explicit which terms must be updated in a given
step of a search algorithm, here we expand the entropies of
the map equation [Eq. (1)] in terms of the visit and tran-
sition rates p, ., ¢;~, and g;~. When teleportation is in-
cluded in the description length as above, the outflow of
modules balances the inflow, but here we derive the out-
come for the general case when ¢, # g;~.

We use the per-step probabilities of entering the modules
q;~ to calculate the average code-word length of the index
code words weighted by their rates of use, which is given
by the entropy for the index codebook,
logy e ™—,  (6)

Q) = - ¥ I
i=12&j=1

where the sum runs over the m modules of the modular
partition. The contribution to the average description
length from the index codebook is the entropy H(Q)
weighted by its rate of use g,

G =D G (7
=1

Substituting Eq. (7) into Eq. (6), we can express the con-
tribution to the per-step average description length from
the index codebook as

m
_q’\[z qi~ 10g2 qt»’\]

Sa~ T a~

q-~H(Q)

m

== gi-llogyqi~ —10g>g.-]
i=1

m
= g-~logq.~ — Z qi~102:g~. (8)
i=1
We use the per-step probabilities of exiting the modules
qi~ and the visit rates p, to calculate the entropy of each
module codebook:

i qi~ qi~
H(P)=— log,
qi~+ X pg, it X P,
BEi BEI
Pa; Pa;

— log,
;,-qier S rp  9i~t X g
BEi BEi

1 ) .
= _p_il:Qi/\logZQi/\ + Z Pa;1082p 4, — Plogy pr, ]
3

a€i
)

with p!, for the rate of use of the i-th module codebook,
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PL=qi~+ D pp. (10)

BEi

Finally, summing over all module codebooks, we obtain
the description length given by the overlapping-module
partition M:

L(M) = g-log,g~ — ) q;-logrqi~ — ) q;-logrq;~

m m

i=1

=2 D Palogapa, + X pilogapi,.

i=1 a€i i=1

i=1
(11

The only visible difference between this expression and the
map equation for nonoverlapping modules is the sum over
conditional probabilities for nodes assigned to multiple
modules, which is no longer independent of the
overlapping-module partition M. But since the transition
rates depend on the conditional probabilities [see Eq. (5)],
all terms depend on the overlapping configuration.

B. The greedy-search algorithm for
overlapping modules

To detect the overlapping-module organization of a net-
work, ultimately we want to find the global minimum
solution of the map equation over all possible
overlapping-module configurations of the network, but
only with an exhaustive enumeration of all possible

(a) (b)

Input: Network and partition generated by infomap
Result: Partition with overlaps

[b] repeat:

[c] | Assign, one at a time, each boundary node to
each of its neighboring modules, and calculate the
codelength change.

Sort these assignations in a list according to the
compression change, from best to worst.

// Next loop answers the question: how many changes, in

/! the ranked order, is it optimal to take?

do
Use quadratic optimization to find the number x of tuples
that it is necessary to take together, counting from the first,
to obtain the minimal code length.

until no better minimum

until there is no more compression gain.

[d]

(c) (d)

code length

solutions can we guarantee the optimal solution. This
procedure is, of course, impractical for all but the smallest
networks. However, we can construct an algorithm that
finds a good approximation. Figure 5 explains the concept
of our algorithm, which builds on an iterative two-step
procedure.

In the first step, we individually assess which nodes are
most likely to be assigned to multiple modules. Starting
from a hard partition generated by Infomap [18] in the first
iteration, we go through all nodes at the boundary between
modules and assign each boundary node to adjacent mod-
ules. That is, one node and one adjacent module at a
time, we assign the node to the adjacent module, such
that the node is assigned to both its original modules and
to the adjacent one, measure the map-equation change, and
then return to the original configuration [see Fig. 5(c)].
Because the multiply assigned nodes connect only to sin-
gly assigned nodes in the first iteration, the conditional
probabilities and the change in the map equation can be
updated quickly without a full recalculation of the visit
rates. This first step produces 3-tuples of local changes of
the form (node, extra-module, map-equation-change).

In the second step, we combine a fraction of all local
changes generated in the first step into a global solution.
Every time two or more multiply assigned nodes are con-
nected, we need to solve a linear system to calculate the
conditional probabilities. When a majority of nodes are

Infomap Fuzzy Infomap, Fuzzy Infomap,
iteration1 iteration 2
A

o ] o
P P o

0o® o I o 00 o

o o o

00 o oc o oo o
0- ° O%o“’ Oo ° 4 coac‘u co ° °°o°°
%oy 00 Capoe ®oypo00
o o L]

number of applied tuples

FIG. 5. General scheme of the two-step greedy-search algorithm for overlapping modules. (a) Pseudocode of the algorithm iteration
[b] of first step [c] and second step [d]. Markers [b], [c], and [c] in the pseudocode correspond to figures (b), (c), and (d). Starting from
a hard partition generated by Infomap [18], each iteration successively increases the overlap between modules to minimize the map
equation for overlapping modules. In the first step (c), one by one, each boundary node is assigned to adjacent modules. In the second
step (d), we first sort the local changes from best to worst and then iteratively apply quadratic fitting to find the number of best local

changes that minimizes the map equation.
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assigned to multiple modules, this can take as long as
calculating the steady-state distribution of random walkers
in the first place. For good performance, we therefore try to
test as few combinations of local changes as possible. After
testing several different approaches, we have opted for a
heuristic method in which we first sort the tuples from best
to worst in terms of map-equation change and then deter-
mine the number of best tuples that minimizes the map
equation. The method works well, because good local
changes often are good globally.

As a side remark, the map equation for the link-
communities approach [17] allows for a straightforward
and fast calculation of all conditional probabilities and
transition rates, since each link belongs to only one mod-
ule. However, this constraint enforces module switches
between boundary nodes that belong to the same module,
because all boundary nodes belong to multiple modules in
the link-communities approach.

Figure 5(d) shows the value of the map equation as a
function of the number of aggregated tuples ordered from
best to worst. Combinations of tuples that individually
generate longer description lengths can generate a shorter
description length if they are applied together. This fact,
together with the greedy order in which we aggregate the
tuples, generates noise in the curve. To quickly approach
the global minimum, we must overcome bad local minima
caused by the noise and evaluate as few aggregations as
possible. Therefore, we iteratively fit a quadratic polyno-
mial to the curve by selecting new points at the minimum
of the polynomial. A quadratic polynomial requires only
three points to be fully specified, but in order to deal with
the noise, we use a moving-local-least-squares fit. In prac-
tice, we evaluate around ten points for each quadratic fit
and repeat this procedure a few times to obtain a good
solution.

Step 1 and step 2 can now be repeated, each time starting
from the obtained solution with overlapping modules from
the previous iteration. Figure 5(b) illustrates that, by re-
peating the two steps, we can sometimes extend the overlap
between modules, but this extension comes at a cost. After
the first iteration of the algorithm, step 1 can also involve
solving a linear system to calculate the conditional proba-
bilities. Thus, the first step is no longer guaranteed
to be as fast as in the first iteration. Still, for medium-sized
networks, multiple iterations are feasible. For example, for
the networks presented in Table I, the first iteration took a
few seconds, and multiple iterations until the point of no
further improvements took less than two minutes on a
normal laptop. We have made the code available at the
web site given in Ref. [36].

IV. CONCLUSIONS

To identify integrated structures in networks that
capture flow for long times and that possibly extend
over each other, we have introduced the map equation for

overlapping modules. When we allow nodes to belong to
multiple-module codebooks and minimize the map equa-
tion over possibly overlapping network partitions, we can
determine which nodes belong to multiple modules and to
what degree. Compared to hard partitions detected by the
map equation, we have further compressed descriptions of
a random walker on all tested real-world networks, and
therefore have revealed more regularities in the flow on the
networks. The modules will overlap if they correspond to
separate flow systems that have shared nodes. We find the
highest degree of overlapping-module organization in
sparse-infrastructure networks, but this result depends on
our random-walk model of flow.

We have contrasted our flow-based approach with other
approaches on benchmark networks with planted overlap-
ping communities. For a random-flow model, the map
equation identifies much fewer modules than the link-
communities method, and similar numbers of modules as
the statistical OSLOM method and the heuristic clique-
percolation method, but with boundary nodes assigned to
more modules. At a speed on a par with the fastest meth-
ods, our novel greedy-search algorithm can capture the
overlapping-flow systems of networks that are good can-
didates for having functional components. Since our
mathematical framework is not limited to random flow, it
would be interesting to compare our results with results
derived from studies of empirical flow.
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